

Prefeitura Municipal de Bragança Paulista MPA - Módulo de Protocolo e Arquivo

Capa de Processo

26/06/2024

: E - 18941 / 2024 Data/Hora: 24/06/2024 - 16:20:07 Processo

Assunto : EIV/RIV

Dep. Origem : DIVISAO DE PLANEJAMENTO FISICO E TERRITORIAL Departamento : DIVISAO DE PLANEJAMENTO FISICO E TERRITORIAL

Endereço Ação

Requerente : CAPRICORNIO TEXTIL S.A

: Avenida Minas Gerais, 1240 - Jardim Doutor Julio De Mesquita Filho - 12910-411 - Bragança Paulista - Sp Endereço

: 35959997 Telefone Celular:

C.N.P.J / C.P.F. Inscr. / R.G: 225025861110

E-mail : sergiosimonegutierrez@gmail.com

: LETICIA MARIA BARSOTTI PINTO DA FONSECA Operador

Histórico : Aprovacao do EIV/RIV

> Prefeitura Municipal de Bragança Paulista Avenida Antonio Pires Pimentel, 2015 Centro Bragança Paulista SP

PREFEITURA DO MUNICÍPIO DE BRAGANÇA PAULISTA Secretaria Municipal de Planejamento

REQUERIMENTO 3

Capricornio Textil SA						
Avenida Minas Gerais	s, 1240					
JARDIM DR. Julio de						
EMAIL bianca@isegsaocarlo assunto	•	FONES 16 991	72 6460			
Certidão de Uso do Solo	Certidão de Localização	Visto	Prévio		Apro	vação de Loteamento
Unificação	Desmembramento	Desc	lobro	х	Alva	rá de Urbanização
Outros EIV/RIV Simp	les					
ATIVIDADE PLEITEADA: Tecelagem de	fios de algodão					
DOCUMENTAÇÃO ANEXADA						
Certidão de matrícula	Projeto Urbanístico	x Mem	orial Descritivo		Mem	orial Justificativo
Carnê IPTU / INCRA	x ART	<u> </u>	dão Negativa			a de localização
Contrato de locação	Autorização do proprietário	Escr	tura de Caução		Epivi	Z
Outros Estudo						
DADOS DO IMÓVEL						
Avenida Minas Gerais Bairro JARDIM DR. Julio de Mesquita Filho Número 1240 Lote						
Área do terreno 37.736,64	Área construída 17.159,10	Macrozona(s	i)			Zona ZD 2
DADOS DA INDÚSTRIA CONFORME ANI	,					202
ÁREA CONSTRUÍDA	POTÊNCIA INSTALADA		PRODUZ FUMAÇA? S(SIM) / N(NÃO)			CO DE EXPLOSÃO / N (NÃO)
HORÁRIO DE TRABALHO	COMBUSTÍVEL UTILIZADO		TIPO DE RESÍDUO SÓ I(INÓCUO) / P (POLUEI			JZ VIBRAÇÕES / N (NÃO)
Nº DE FUNCIONÁRIOS	RUÍDOS EMITIDOS (dB)		PRODUZ ODORES? S(SIM) / N(NÃO)	HÁ MATERIAL S(SIM) / N(NÃ		TERIAL PULVURULENTO? / N (NÃO)
RESPONSÁVEL TÉCNICO						
Nome Bianca Simoni				Inscrição no 50614		3-SP
Rua São Sebastião,	2584	Bairro	ntro		Fone	991726460
OBSERVAÇÕES COMPLEMENTARES	2504	100	11110		110	331720400
Solicito a Aparovação d	lo Estudo de Imapcto de	Vizinha	n c a do Em	preendin	nento)
1 3	1			L		

NESTES TERMOS, PEDE DEFERIMENTO.		PROTOCOLO №	
BIANCA SIMONI:175 40520884	Assinado de forma digital por BIANCA SIMONI:17540520884 Dados: 2024.06.24 16:02:44 -03'00'		
DATA	ASSINATURA DO REQUERENTE	DATA	ASS. DO SERVIDOR

 $Av.\ Antonio\ Pires\ Pimentel,\ 2015-Centro-CEP:\ 12914-000-Bragança\ Pta.-SP-Telefone:\ (11)\ 4034-7100-Site:\ www.braganca.sp.gov.braganca$

Estudo de Impacto de Vizinhança

Capricórnio Têxtil S.A.

Avenida Minas Gerais, 1240 | Bragança Paulista - SP, CEP: 12.910-411

Responsável Técnico:

Bianca Simoni – Engenheira Agrônoma/Engenheira de Segurança do Trabalho Mestra em Ciências Naturais/Geotecnia Ambiental – CREA/SP: 5061453273

Equipe Técnica:

Mariana da Silva Baldini -Engenheira Ambiental/CREA – SP: 5070139694 Marlon Augusto Simoni – Engenheiro Civil/CREA – SP: 5063049155

Sumário

1.	INFORMAÇÕES GERAIS	4
2.	CARACTERIZAÇÃO DO EMPREENDIMENTO	4
Loca	alização do Empreendimento	4
Out	ras Informações	7
Des	crição e Análise Sobre Aspectos Técnicos, Econômicos, Sociais E Ambientes Envolvidos	7
		7
3	. ASPECTOS MÍNIMOS A SEREM ANALISADOS	8
Α) Adensamento Populacional	8
В) Equipamentos Urbanos e Comunitários	8
4	. ÁREA DE INFLUÊNCIA DIRETA DO EMPREENDIMENTO	11
5.	USO E OCUPAÇÃO DO SOLO	12
6.	VALORIZAÇÃO IMOBILIÁRIA	12
7.	GERAÇÃO DE TRÁFEGO E DEMANDA POR TRANSPORTE PÚBLICO	13
8.	VENTILAÇÃO, ILUMINAÇÃO E INSOLAÇÃO	13
9.	PAISAGEM URBANA E PATRIMÔNIO NATURAL E CULTURAL	14
10.	POLUIÇÃO VISUAL	14
11.	NÍVEIS DE RUÍDO E VIBRAÇÃO	14
12.	QUALIDADE DO AR	14
13.	GERAÇÃO DE RESÍDUOS SÓLIDOS E MOVIMENTAÇÃO DE TERRA	15
14.	VEGETAÇÃO, ARBORIZAÇÃO URBANA, RECURSOS HÍDRICOS E FAUNA	15
15.	CAPACIDADE DA INFRAESTRUTURA URBANA EM GERAL	16
16.	INTEGRAÇÃO COM PLANOS E PROGRAMAS EXISTENTES	17
17.	IMPACTO SOCIAL NA POPULAÇÃO RESIDENTE OU ATUANTE NO ENTORNO	17
18.	INCLUSÃO OU EXCLUSÃO SOCIAL	18
19.	IMPACTO NAS RELAÇÕES SOCIAIS COM A VIZINHANÇA	18
20.	Conclusão	19

1. INFORMAÇÕES GERAIS

Identificação do Empreendimento

Trata-se de um empreendimento que realiza tecelagem de fios de algodão

Identificação e Qualificação do Empreendedor

Nome ou Razão Social: Capricórnio Textil SA

CNPJ: 60.745.411/0006-72

Endereço Completo: Avenida Minas Gerais, nº 1240, Bragança Paulista/SP – CEP: 12.910-

411.

Telefone: (11) 35959997

Número De Funcionários: 258

Horário De Funcionamento: 07:00 Horas Às 07:00 Horas

Responsáveis Legais e Pessoas De Contato: Diogo Moura

Telefone: (11) 3593 9997/ 16 98189 3840

E-mail: diogo.moura@capricornio.com.br

Identificação Do Profissional Responsável Pelo EIV/RIV

Nome: Bianca Simoni

Endereço: Rua São Sebastião, nº 2584, Centro – São Carlos/SP – CEP:

CREA: 5061453273

Telefone: 16 99172 6460

E-mail: bianca@isegsaocarlos.com.br

2. CARACTERIZAÇÃO DO EMPREENDIMENTO

Localização do Empreendimento

O empreendimento está localizado na **Avenida Minas Gerais, nº 1240,** sendo possível acessá-lo, também, pela Avenida Quinze de Dezembro, conforme pode ser visualizado na Figura da imagem abaixo.

Figura 1: Empresa Capricórnio Textil, delineada em roxo, entre suas vias de acesso.

Descrição do Empreendimento

O presente Estudo de Impacto de Vizinhança, tem por finalidade, além da atualização da versão anterior, a contemplação da ampliação que será realizada nas dependências do empreendimento. A figura da imagem a seguir demarca os locais onde ocorrerão as obras de ampliação.

Figura 2: Demarcações em vermelho - futuras instalações.

A área do empreendimento tem em média 39.972 m² e é composto por portaria, escritório, setores de fabricação dos tecidos e setor de armazenamento dos rolos de tecidos. O horário de funcionamento é das 07:00 horas às 07:00 horas. A figura da imagem abaixo, apresenta a planta atual da empresa.

Figura 3: Planta atual do empreendimento.

A Capricórnio produz o denim, a matéria-prima para o jeans, que é protagonista de diversos movimentos culturais. Tem sede na cidade de São Paulo e duas filiais no interior da capital paulista, nas cidades de São Carlos e Bragança Paulista (empreendimento objeto deste EIV/RIV), com comércio de denim para o setor de confecções no Brasil e na América Latina para fabricação de vestuários. No Brasil possui clientes localizados em todos os 26 Estados brasileiros, sendo que São Paulo e Santa Catarina concentram o número mais significativo de clientes. Na América Latina, fornece para Argentina, Colômbia, Equador e Paraguai.

O empreendimento desenvolveu e implementou o Procedimento de Gestão de Riscos de Compliance e sua Matriz de Riscos, visando avaliar de forma proativa o seu Programa de Compliance e eventuais riscos de não conformidade às suas regras internas (Código de Conduta, políticas e normas) e à legislação aplicável, além de manter a eficácia do seu programa.

Outras Informações

Descrição e Análise Sobre Aspectos Técnicos, Econômicos, Sociais E Ambientes Envolvidos

Sobre o aspecto técnico: - a Capricórnio Têxtil está localizada na ZDE 2 - Zona de Desenvolvimento Econômico 2, que corresponde às porções do território situadas ao longo das principais rodovias do município destinadas à implantação de usos e atividades destinadas ao fomento industrial. De acordo com o "Parâmetro de Uso e Ocupação de Solo" — disponibilizado no site da prefeitura de Bragança Paulista — é **vedado** na DEZ 2 loteamentos para fins residenciais.

No aspecto econômico. O local se apresenta como ideal, por estar em um local adequado ao produto oferecido.

Quanto aos aspectos sociais: o empreendimento já é responsável para benefício social para o município, através da empregabilidade e a ampliação possibilitará a uma maior geração de empregos.

No aspecto ambiente envolvido: o empreendimento não degrada os ambientes naturais do local, ao contrário, conforme pode ser observado na figura da imagem a seguir, o empreendimento possui e conserva áreas verdes.

Figura 4: Áreas verdes nas dependências do empreendimento.

3. ASPECTOS MÍNIMOS A SEREM ANALISADOS

A) Adensamento Populacional

De acordo com o último censo, realizado em 2022 pelo IBGE, a cidade de Bragança Paulista possui uma densidade demográfica de 344,94 hab/km² e a área total do município é de 513 km².

- O Adensamento populacional refere-se a um aumento na taxa de crescimento de uma população regulada por sua densidade, assim, o adensamento populacional no local é de forma indireta, ou seja, temporária, visto que a localização do empreendimento não comporta residências.
- O empreendimento está instalado em uma zona de desenvolvimento econômico destinado a empresas. A demanda gerada pelo empreendimento, será somente pelo fluxo de funcionários em seus horários de trabalho e não trará interferência no adensamento populacional do local, pois não contará com habitantes fixos, ou moradores do local.
- O empreendimento poderá gerar um adensamento temporário. Portanto, conclui-se que o adensamento populacional não será afetado.

B) Equipamentos Urbanos e Comunitários

De acordo com Mapa de Equipamentos Urbanos e Comunitários disponível no portal da Prefeitura de Bragança Paulista, foi possível elaborar, através de geoprocessamento pelo software QGis, o mapa da figura a seguir, dos equipamentos em um raio de 300 metros do empreendimento.

Equipamentos Urbanos e Comunitários

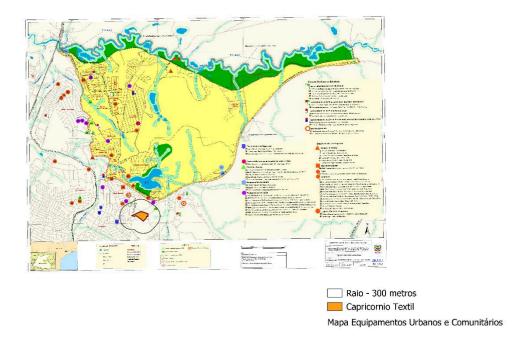


Figura 5: Mapa com raio de 300 metros do empreendimento dos equipamentos urbanos e comunitários

A figura da imagem a seguir apresenta o zoom com a localização do empreendimento e os equipamentos.

Figura 6: Empreendimento – polígono cor laranja - com raio de 300 m dos equipamentos urbanos e comunitários.

Equipamentos listados pelo mapa de Propositivo Equipamentos Sociais



Figura 7: Equipamentos Listados pela Prefeitura de Bragança Paulista

Conforme pode ser observado na figura 6 - Empreendimento – polígono cor laranja - com raio de 300 m dos equipamentos urbanos e comunitários – no raio de 300 metros podem ser

visualizados 3 equipamentos urbanos e comunitários, a saber:

- > Entidades Sociais
- > Escolas Municipais e Estaduais
- > Equipamentos de Saúde

C) AVALIAÇÃO DA DEMANDA GERADA PELO EMPREENDIMENTO

Apesar destes 3 equipamentos encontrarem-se no raio de 300 m do empreendimento, não haverá demanda por equipamentos urbanos e comunitários pois trata-se de uma empresa consolidade que possui programas de treinamentos internos, bem como, ambulatório. Os funcionários, quando necessário, fazem uso dos equipamentos urbanos e comunitários, em locais próximos as suas residências.

4. ÁREA DE INFLUÊNCIA DIRETA DO EMPREENDIMENTO.

Figura 8: Área de Influência - raio de 300 metros.

Considera-se área de influência do empreendimento imediata a quadra onde será instalada a empresa e, área de influência mediata, toda área num raio de 300 m.

O local do empreendimento está situado em uma área que pode ser considerada consolidada, com outros empreendimentos empresariais. Do outro lado da Avenida Quinze de Dezembro, é possível observar o uso residencial. Entretanto, basicamente como orienta o Zoneamento, o entorno é caracterizado por construções industriais.

5. USO E OCUPAÇÃO DO SOLO

De acordo com mapa de Zoneamento disponibilizado no portal na Prefeitura de Bragança Paulista, o empreendimento se localiza na ZD 2 (Zona de Desenvolvimento Econômico 2) , conforme figura da imagem a seguir.

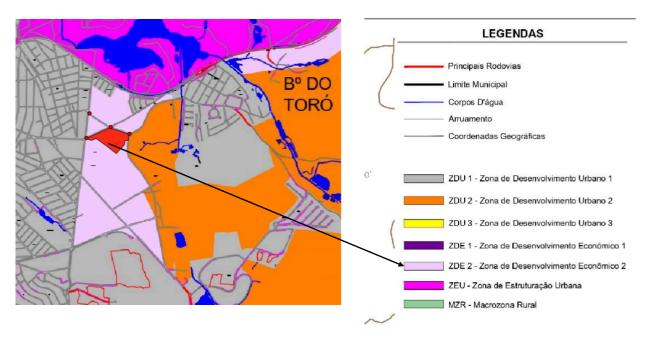


Figura 9: Recorte do Mapa de Zoneamento com a localização do empreendimento na ZD2.

6. VALORIZAÇÃO IMOBILIÁRIA

Toda edificação já construída quando mantida em ótimo estado e funcionamento, principalmente com geração de renda, sempre traz valorização econômica para a realidade socioeconômica do público ao qual se destina.

A localização do empreendimento, bem como, sua atividade é bem atrativa para a valorização, uma vez que muitos pequenos e médios empresários buscam fazer parte da cadeia de

suprimentos do empreendimento e, para tanto, buscam alocarem próximo a sua localização.

7. GERAÇÃO DE TRÁFEGO E DEMANDA POR TRANSPORTE PÚBLICO

Rotas de acesso: o sistema viário principal é composto pela av. Minas Gerais e Quinze de Dezembro, ambas são asfaltadas, bem como, críticas sempre em horário de pico.

As vias de acesso encontram-se sinalizadas, e possuem pavimentação asfáltica as vias no entorno são todas sinalizadas, com informações necessárias para que os transeuntes possam se orientar em como ir até os locais pretendidos.

O local contempla vagas para estacionamento.

O entorno do empreendimento é bem suprido por ruas e avenidas, com boa trafegabilidade e pavimentação, oferecendo vias secundárias para uma boa trafegabilidade.

Ônibus circulares: é de competência de empresa terceirizada de transportes urbanos que oferece ponto de ônibus na região em locais próximos ao empreendimento e na região do bairro. A linha que serve a Avenida Minas Gerais é a 311 e todas as linhas **penha.**

8. VENTILAÇÃO, ILUMINAÇÃO E INSOLAÇÃO

Conforme pode ser observado na figura da imagem a seguir, o imóvel da forma como está edificado, não provoca sombreamento e nem barreira de ventilação nas edificações vizinhas.

No que tange iluminação, o empreendimento possui aberturas, trabalha com as portas abertas, possui sistema de exaustão o que permitem que haja boa iluminação em seu interior.

A ventilação natural também é aproveitada em virtude de a construção possuir portas e janelas de acordo com os mínimos exigidos, no projeto. Isso possibilita uma maior circulação da ventilação no imóvel.

Figura 10: Empreendimento - ausência de sombreamento e ventilação para os demais imóveis.

9. PAISAGEM URBANA E PATRIMÔNIO NATURAL E CULTURAL

Em termos de espaços culturais e turísticos dentro de um raio de 300m, não há nenhum na região, e nem mesmo prédios tombados.

10. POLUIÇÃO VISUAL

Não há anúncio publicitário na fachada da empresa e caso isso venha ocorrer, o empreendedor se dispõe a atender todas as normas vigentes.

11. NÍVEIS DE RUÍDO E VIBRAÇÃO

Os parâmetros técnicos desta avaliação de ruído deverão ser balizados pela norma pertinente, NBR 10.151 – acústica – **AVALIAÇÃO DO RUÍDO EM ÁREAS HABITADAS, VISANDO O CONFORTO DA COMUNIDADE** – **PROCEDIMENTO**. O ensaio de ruído foi realizado em todo o entorno do empreendimento e todos os pontos encontram-se dentro dos parâmetros normativos – laudo em anexo.

O ensaio de vibração constatou que os parâmetros técnicos são atendidos – laudo anexo.

12. QUALIDADE DO AR

O ensaio de emissões atmosféricas foi realizado para medição de CO2 e NOx na saída da

chaminé da caldeira do empreendimento e a quantificação obtida encontra-se dentro dos parâmetros normativos.

13. GERAÇÃO DE RESÍDUOS SÓLIDOS E MOVIMENTAÇÃO DE TERRA

O lixo gerado no empreendimento é armazenado em local coberto nas dependências do empreendimento e recolhido pela empresa EMBRALIXO - Empresa Bragantina de Varrição e Coleta de Lixo Ltda.

Os demais resíduos gerados no empreendimento são retirados por empresas de reciclagem.

Atualmente não há movimentação de terra e não haverá também no processo de ampliação.

Todos os resíduos de construção gerado serão alocados em caçambas de acordo com a Legislação de Resíduos Sólidos e destinada de forma adequada para aterros de construção civil e demolição.

14. VEGETAÇÃO, ARBORIZAÇÃO URBANA, RECURSOS HÍDRICOS E FAUNA

O empreendimento é bem arborizado, principalmente em seu estacionamento e dentro de nas laterais internas de suas.

As ruas onde se localiza o empreendimento não são arborizadas, conforme pode ser visualizado na figura da imagem a seguir.

Figura 11: Ausência de arborização nas ruas onde se localiza o empreendimento.

15. CAPACIDADE DA INFRAESTRUTURA URBANA EM GERAL

- Abastecimento de água e esgoto: o abastecimento é feito através da rede pública -SABESP.
- Energia elétrica: compete à rede elétrica bragantina grupo ENERGISA, no que se refere ao fornecimento de energia elétrica para a cidade.
- Coleta de resíduos: é de competência da empresa de coleta pública de lixo, que faz os serviços de coletas de lixo doméstico, num período de três vezes semanais.
- Drenagem pluvial: o sistema de drenagem pluvial é de competência da prefeitura municipal. As ruas do entorno possuem declive para o fundo de vale e possuem os mecanismos de micro drenagem, tais como, guias, sarjetas, meio fio, que favorecem o escoamento da água fluvial.
- Ônibus circulares: é de competência de empresa terceirizada de transportes urbanos

que oferece ponto de ônibus na região em locais próximos ao empreendimento e na região do bairro. A linha que serve a região: penha

16. INTEGRAÇÃO COM PLANOS E PROGRAMAS EXISTENTES

O empreendimento atenderá todas as diretrizes municipais, em que se destacam o plano municipal de saneamento básico (em especial, a disposição de resíduos de construção civil), plano de zoneamento, uso e ocupação do solo de Bragança Paulista – lei complementar nº 556, de 20 de julho de 2007 e o plano diretor – lei complementar n° 893, de 03 de janeiro de 2020.

17. IMPACTO SOCIAL NA POPULAÇÃO RESIDENTE OU ATUANTE NO ENTORNO

		RECURSOS HUMANO	S
ATIVIDADE	ASPECTO	IMPACTOS	MEDIDAS MITIGADORAS OU COMPENSATÓRIAS
Contratação de Pessoal	Geração de empregos	Aumento do capital da população Diminuição da tensão social Geração de tributos e impostos	Impacto Positivo Contratação preferencial da população ao entorno do empreendimento
	Geração de renda	Aumento de arrecadação de impostos e tributos Aumento na demanda de infraestrutura urbana e serviços	Impacto positivo

MOVIMENTAÇÃO DE VEÍCULOS E CIRCULAÇÃO DE PESSOAS NO ENTORNO DO EMPREENDIMENTO						
ATIVIDADE	ASPECTO	IMPACTOS	MEDIDAS MITIGADORAS OU COMPENSATÓRIAS			
Movimentação de veículos	Emissão de gases	Poluição atmosférica	Controle através de quantificações e oportunidade de plantios de árvores			
Wovimentação de velculos	Aumento do nível de ruído	Poluição sonora	Regulação do trânsito local			
	Poeiras	Poluição atmosférica	Controle através de quantificações e oportunidade de plantios			
	Ruídos	Poluição sonora	Controle através de ensaios de quantificações			
Processo de Ampliação - construção (TEMPORÁRIO)	Tráfego maior - devido a mão de obra especializada e entrega de materiais para a construção	Congestionamento das vias públicas e Aumento do risco de acidentes	Estimulação do uso de outros meios de transporte; Desenvolvimento de ações continuadas de educação para o trânsito; Instalação de redutores de velocidade e de fiscalização eletrônica em pontos estratégicos e Fiscalização ostensiva do policiamento militar, civil e guarda municipal nas áreas de influência do empreendimento (vizinhança imediata).			

COMERCIO E SERVIÇOS					
ATIVIDADE	ASPECTO	IMPACTOS	MEDIDAS MITIGADORAS OU COMPENSATÓRIAS		
Processo de Ampliação -	Compra de materias	Movimentação do comércio local	Junganta Darikina		
construção (TEMPORÁRIO)	de construção civil	Geração de tributos e impostos	Impacto Positivo		

18. INCLUSÃO OU EXCLUSÃO SOCIAL

Em relação aos itens:

- Saúde e Segurança do Trabalhador: o empreendimento possui Serviço
 Especializado em Engenharia de Segurança e Medicina do Trabalho atuante.
- Inovação: o empreendimento se preocupa constantemente com atuar, devido ao seu ramo de atividade, com responsabilidade e inovação tecnológica para aprimorar seus processos.
- Responsabilidade Socioambiental: o empreendimento lançou seu Relatório de Sustentabilidade onde apresenta todas as ações voltadas para seus colaboradores, meio ambiente (através da correta destinação de resíduos, tratamento de águas residuária, controle de emissões atmosférica e ruído).
 Relatório está disponível no seguinte endereço eletrônico < relatorio capricornio 04 05-revtati.pdf>.

19. IMPACTO NAS RELAÇÕES SOCIAIS COM A VIZINHANÇA

Não ocorre conflitos com a vizinhança, principalmente devido a localização do empreendimento por estar em uma Zona de Desenvolvimento voltada ao setor empresarial. E no que tange, no raio de 300 metros, parte de uma área de moradia, não há como interferir visto que o empreendimento está recuado, conforme figura da imagem a seguir, ou seja, a empresa Max Gear está na região frontal do empreendimento.

Figura 12: Empresa Capricórnio - setor produtivo recuada em relação a Avenida Quinze de Dezembro.

20. Conclusão

Este Estudo de Impacto de Vizinhança foi realizado de forma imparcial, com o intuito de demostrar que mesmo com os impactos inerentes a atividade industrial, o empreendimento apresenta viabilidade em termos de Impacto de Vizinhança. Não está localizado em Zonas residenciais, controla suas emissões atmosférica, controla emissões de ruído e vibração, realiza treinamentos de capacitações para seus colaboradores, possui ambulatório médico, possui estacionamento próprio (não sobrecarrega as vias públicas), mantém áreas verdes e permeáveis (contribuindo para a drenagem), bem como, destina de forma correta seus resíduos.

A Responsável Técnico coloca-se à disposição para quaisquer esclarecimentos.

Bianca Simoni

Engenheira Agrônoma/Eng. De Segurança do Trabalho

CREA: - 5361453275

ART n⁰ 2620241080622

ISEG Corporation Ltda

BIANCA 0520884

Assinado de forma digital por BIANCA SIMONI:1754 SIMONI:17540520884 Dados: 2024.06.24 12:02:51 -03'00'

O Responsável pelo empreendimento, também, coloca-se à disposição para quaisquer esclarecimentos.

Diogo Moura

COORDENADOR DE SESMT E FACILITIES

diogo.moura@capricornio.com.br

(11) 91282-9251 / (16) 981893840

www.capricornio.com.br

Diogo Marques de Moura

Diogo Marques de Moura

Signature: Diogo Marques de Mo

Email: diogo.moura@capricornio.com.br

Relatório de Impacto de Vizinhança

Capricórnio Têxtil S.A.

Avenida Minas Gerais, 1240 | Bragança Paulista - SP, CEP: 12.910-411

Responsável Técnico:

Bianca Simoni – Engenheira Agrônoma/Engenheira de Segurança do Trabalho Mestra em Ciências Naturais/Geotecnia Ambiental – CREA/SP: 5061453273

Equipe Técnica:

Mariana da Silva Baldini -Engenheira Ambiental/CREA – SP: 5070139694 Marlon Augusto Simoni – Engenheiro Civil/CREA – SP: 5063049155

Sumário

1.	INFORMAÇÕES GERAIS	4
2.	CARACTERIZAÇÃO DO EMPREENDIMENTO	4
	SÍNTESE DO DIAGNÓSTICO DE IMPACTO	
4.	Legislação Referente à Área de Influência	8
5.	Referência Bibliográfica	8
6.	Anexos	9
7.	Finalização	9

1. INFORMAÇÕES GERAIS

Identificação do Empreendimento

Trata-se de um empreendimento que realiza tecelagem de fios de algodão

Identificação e Qualificação do Empreendedor

Nome ou Razão Social: Capricórnio Textil SA

CNPJ: 60.745.411/0006-72

Endereço Completo: Avenida Minas Gerais, nº 1240, Bragança Paulista/SP – CEP: 12.910-

411.

Telefone: (11) 35959997

Número De Funcionários: 258

Horário De Funcionamento: 07:00 Horas Às 07:00 Horas

Responsáveis Legais e Pessoas De Contato: Diogo Moura

Telefone: (11) 3593 9997/ 16 98189 3840

E-mail: diogo.moura@capricornio.com.br

Identificação Do Profissional Responsável Pelo EIV/RIV

Nome: Bianca Simoni

Endereço: Rua São Sebastião, nº 2584, Centro – São Carlos/SP – CEP:

CREA: 5061453273

Telefone: 16 99172 6460

E-mail: bianca@isegsaocarlos.com.br

2. CARACTERIZAÇÃO DO EMPREENDIMENTO

Localização do Empreendimento

O empreendimento está localizado na **Avenida Minas Gerais, nº 1240,** sendo possível acessá-lo, também, pela Avenida Quinze de Dezembro, conforme pode ser visualizado na Figura da imagem abaixo.

Figura 1: Empresa Capricórnio Textil, delineada em roxo, entre suas vias de acesso.

Descrição do Empreendimento

O presente Estudo de Impacto de Vizinhança, tem por finalidade, além da atualização da versão anterior, a contemplação da ampliação que será realizada nas dependências do empreendimento. A figura da imagem a seguir demarca os locais onde ocorrerão as obras de ampliação.

Figura 2: Demarcações em vermelho - futuras instalações.

A área do empreendimento tem em média 39.972 m² e é composto por portaria, escritório, setores de fabricação dos tecidos e setor de armazenamento dos rolos de tecidos. O horário de funcionamento é das 07:00 horas às 07:00 horas. A figura da imagem abaixo, apresenta a planta atual da empresa.

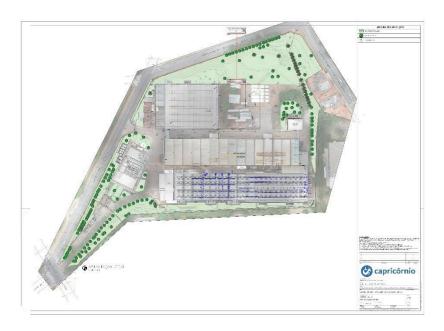


Figura 3: Planta atual do empreendimento.

A Capricórnio produz o denim, a matéria-prima para o jeans, que é protagonista de diversos movimentos culturais. Tem sede na cidade de São Paulo e duas filiais no interior da capital paulista, nas cidades de São Carlos e Bragança Paulista (empreendimento objeto deste EIV/RIV), com comércio de denim para o setor de confecções no Brasil e na América Latina para fabricação de vestuários. No Brasil possui clientes localizados em todos os 26 Estados brasileiros, sendo que São Paulo e Santa Catarina concentram o número mais significativo de clientes. Na América Latina, fornece para Argentina, Colômbia, Equador e Paraguai.

O empreendimento desenvolveu e implementou o Procedimento de Gestão de Riscos de Compliance e sua Matriz de Riscos, visando avaliar de forma proativa o seu Programa de Compliance e eventuais riscos de não conformidade às suas regras internas (Código de Conduta, políticas e normas) e à legislação aplicável, além de manter a eficácia do seu programa.

3. SÍNTESE DO DIAGNÓSTICO DE IMPACTO

Sistema Viário

No sistema viário (com relação às movimentações de ruas avenidas, praças, pontos de estacionamento, mobilidade de pessoas, etc): com referência ao trânsito a edificação se localiza no cruzamento de duas avenidas com movimentação de veículos, com acesso fácil as vias principais da região. Então, conclui-se que, mesmo com o processo de ampliação predial, não haverá aumento de tráfego de veículos no entorno. No que se refere ao transporte público, não irá acarretar nenhuma sobrecarga das linhas urbanas.

Infraestrutura Urbana

O local possui toda infraestrutura urbana necessária como:- água, esgoto, pavimentação asfáltica, energia elétrica, telecomunicação e não acarretará sobrecarga em nenhuma delas, pois a ocupação do local é flutuante, ou seja, temporária.

Impacto Ambiental

Este item refere-se à modificação da paisagem urbana, Áreas de Preservação Ambiental, cursos d'água, emissão de ruídos, etc.

Pelo presente estudo o empreendimento não causa nenhum dano ao Meio Ambiente, pois controla os aspectos ambientais existentes e seus processos.

Impacto Social

Do ponto de vista das repercussões socioculturais, a construção estabeleceu um planejamento adequado, oriundo do zoneamento municipal estabelecido pelo plano diretor (gestão urbana) e respeita as demais legislações vigentes para não impactar seu entorno.

Proposta De Medidas Mitigatórias

Em relação aos impactos eventualmente apontados como negativos as medidas mitigatórias deverão ser adotadas pelo empreendedor, com o intuito de obedecer ao disposto no estudo de impacto de vizinhança, visando não acarretar problemas no trânsito, ruídos, e qualquer

outro tipo de impacto negativo, sempre seguindo a regulamentação atual como as que vierem a ser sancionadas, através de leis municipais. Propõe-se também que caso haja algum tipo de modificação estrutural ou social da empresa, que o empreendedor faça as notificações junto aos órgãos públicos, para tal regularização.

Conclusões e Comentários de Ordem Geral

Através da análise dos itens do presente relatório, na vizinhança não haverá impactos negativos com a instalação do empreendimento, quer sejam ambientais, sociais, econômicas ou na paisagem urbana. Tudo foi devidamente analisado e conclui-se pela inexistência de grandes impactos, uma vez que já são e serão atendidas todas as exigências legais para o processo de ampliação, utilização e funcionamento do empreendimento. Pelo exposto, considerados os impactos e as medidas mitigatórias descritas no estudo de impacto de vizinhança e presente relatório de impacto de vizinhança, o empreendimento poderá se ampliar suas instalações sem que a vizinhança sofra qualquer prejuízo em sua qualidade de vida.

4. Legislação Referente à Área de Influência

Lei Complementar nº 534 de 16 Abril de 2007

Plano Diretor

Lei Complementar nº 556 de 20 Abril de 2007

Código de Urbanismo

Lei Complementar nº 561 de 26 Setembril de 2007

Estudo de Impacto de Vizinhança (EIV) e Relatório de Impacto de Vizinhança (RIV)

5. Referência Bibliográfica

Prefeitura Municipal de Bragança Paulista

Plano Diretor

Código de Urbanismo de Bragança Paulista, SP,2007.

Lei de Estudo de Impacto de Vizinhança (EIV) e Relatório de Impacto de Vizinhança (RIV)

ABNT NBR 10151:2019 - Avaliação de ruído em áreas habitadas

Decisão da Diretoria CETESB – Ensaio de Vibração

6. Anexos

- Laudo Ensaio de Ruído
- Laudo Ensaio de Vibração
- CNP
- Licença Operação CETESB

7. Finalização

A Responsável Técnico coloca-se à disposição para quaisquer esclarecimentos.

Bianca Simoni

Engenheira Agrônoma/Eng. De Segurança do Trabalho

CREA: - 5361453275

ART n⁰ 2620241080622

ISEG Corporation Ltda

BIANCA SIMONI:1754052 SIMONI:17540520884 0884

Assinado de forma digital por BIANCA Dados: 2024.06.24 12:09:24

O Responsável pelo empreendimento, também, coloca-se à disposição para quaisquer esclarecimentos.

Diogo Moura

Diogo Marques de Moura

COORDENADOR DE SESMT E FACILITIES

diogo.moura@capricornio.com.br

(11) 91282-9251 / (16) 981893840

www.capricornio.com.br

Email: diogo.moura@capricornio.com.br

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

ART de Obra ou Serviço 2620241080622

Conselho Regional de Engenharia e Agronomia do Estado de São Paulo

1. Responsável Técnico –					
BIANCA SIMONI					
Título Profissional: Engenheira Agrônon	na, Engenheira de Segurança do Trabalho		RNP: 26088666	89	
Empresa Contratada: ISEG CORPORATION LTDA			Registro: 5061453273-SP Registro: 2329210-SP		
2. Dados do Contrato					
Contratante: Capricórnio Textil			CPF/CNPJ: 60.74	5.411/0006-42	
Endereço: Avenida Minas Gerais			N°: 1240		
Complemento:		Bairro: Jardim Dout	or Júlio de Mesqu	ita Filho	
Cidade: Bragança Paulista		UF: SP	CEP: 12910-41	1	
Contrato:	Celebrado em: 11/06/2024	Vinculada à Art n°:			
Valor: R\$ 5.800,00	Tipo de Contratante: Pessoa Jurídica de	e Direito Privado			
Ação Institucional:					
3. Dados da Obra Serviço					
Endereço: Avenida Minas Gerais			N°: 1240		
Complemento:		Bairro: Jardim Doutor	Júlio de Mesquita F	ilho	
Cidade: Bragança Paulista		UF: SP	CEP: 12910-41	11	
Data de Início: 11/06/2024					
Previsão de Término: 24/06/2024					
Coordenadas Geográficas:					
Finalidade: para fins ambientais			Código:		
4. Atividade Técnica					
			Quantidade	Unidade	
Elaboração					
1 Laudo	de estudo de impacto de vizinhança	•	25,00000	hora	
Após a conclusa	ão das atividades técnicas o profissional de	everá proceder a baixa	desta ART		
——— 5. Observações					
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Esta AH i destina-se a Elaboração do Laudo de	Estudo de Impacto de Vizinhança/Relatório de Impa	cto de Vizinhança			

- 6. Declarações

Acessibilidade: Declaro que as regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº 5.296, de 2 de dezembro de 2004, não se aplicam às atividades profissionais acima relacionadas.

Resolução nº 1.025/2009 - Anexo I - Modelo A

Página 2/2

7. Entidade de Cla	sse		9. Informações
Nenhuma			- A presente ART encontra-se devid constantes no rodapé-versão do sis
8. Assinaturas			
Declaro serem verdadeiras	as informações acima		- A autenticidade deste documento www.creasp.org.br ou www.confea.
<u> </u>	de de	_	
Local	data		A guarda da via assinada da ART e do contratante com o objetivo de
BIANCA SI	MONI - CPF: 175.405.208-84	-	
			www.creasp.org.br
Capricórnio Tex	til - CPF/CNPJ: 60.745.411/0006-42	_	Tel: 0800 017 18 11 E-mail: acessar link Fale Conosco do

Valor Pago R\$ 99,64

- damente quitada conforme dados stema, certificada pelo *Nosso Número*.
- pode ser verificada no site .org.br
- será de responsabilidade do profissional documentar o vínculo contratual.

Nosso Numero: 2620241080622

site acima

Versão do sistema

Valor ART R\$ 99,64 Registrada em: 21/06/2024 Impresso em: 24/06/2024 11:57:10

Laudo Ambiental de Ruído

Capricórnio Têxtil S.A.

Avenida Minas Gerais, 1240 | Bragança Paulista - SP, CEP: 12.910-411

Responsável Técnico:

Bianca Simoni – Engenheira Agrônoma/ Engenheira Segurança do Trabalho Mestra em Ciências Naturais/Geotecnia Ambiental – CREA/SP: 5061453273

Equipe Técnica:

Mariana da Silva Baldini -Engenheira Ambiental/CREA – SP: 5070139694 Sheila Mendes de Almeida Silva – Técnica em Segurança do Trabalho/ MTE: 0110829/SP

Sumário

Responsável Técnico:	2
Equipe Técnica:	2
1. OBJETO	4
2. DESCRIÇÃO DO LOCAL	4
3. CARACTERIZAÇÃO DO ENTORNO	4
4. INSTRUMENTAÇÃO UTILIZADA	5
4.1 Ruído	5
4.2 Vibrações	Erro! Indicador não definido.
5. METODOLOGIA DE MEDIÇÃO	6
5.1 Ruído	6
5.2 Vibrações	Erro! Indicador não definido.
6. LIMITES PARA NÍVEIS DE RUÍDO E VIBRAÇÃO EM ÁREAS HABITAD COMUNIDADE	
6.1 Ruído	Erro! Indicador não definido.
6.2 Vibrações	Erro! Indicador não definido.
7. RESULTADOS DA MEDIÇÃO DOS NÍVEIS DE RUÍDO	9
7.1 Ruído	9
7.2 Vibrações	Erro! Indicador não definido.
8. ANÁLISE DOS RESULTADOS	9
8.1 Ruído	9
8.2 Vibrações	Erro! Indicador não definido.
9. CONCLUSÃO	10
9.1 Ruído	10
9.2 Vibração	12
10 FNCFRRAMENTO	13

1. OBJETO

Este laudo tem o objetivo de aferir o nível de ruído gerado pelas atividades da empresa que possa importunar os habitantes do entorno e, poderá ser integralizado no Estudo de Impacto de Vizinhança (EIV).

Baseado nos resultados deste laudo, será possível detalhar as soluções para minimizar o ruído e que possa vir a prejudicar os moradores próximos ao local de instalação da sededa empresa Capricórnio Textil S/A, localizada na Avenida Minas Gerais, 1240 - Bragança Paulista, SP - CEP: 12910-411.

2. DESCRIÇÃO DO LOCAL

A área da empresa tem em média 39.972 m². A empresa é composta por portaria, escritório, setores de fabricação dos tecidos e setor de armazenamento dos rolos de tecidos. O horário de funcionamento é das 07:00 horas às 07:00 horas.

3. CARACTERIZAÇÃO DO ENTORNO

A Capricórnio Têxtil está localizada na ZDE 2 - Zona de Desenvolvimento Econômico 2, que corresponde às porções do território situadas ao longo das principais rodovias do município destinadas à implantação de usos e atividades destinadas ao fomento industrial. Ao seu redor estão localizadas outras unidades fabris, conforme a figura 1 abaixo.

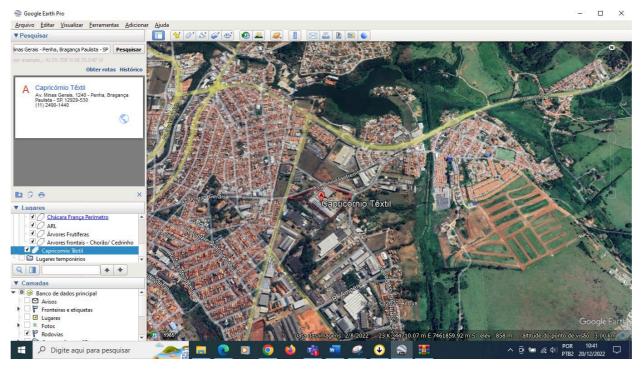


Figura 1: Localização da empresa Capricórnio -Fonte: Google Earth — WGS84

Figura 2: Recorte localização e entorno da empresa Capricórnio Têxtil.

4. INSTRUMENTAÇÃO UTILIZADA

4.1 Ruído

As medições de nível de pressão sonora foram realizadas respeitando as recomendações da norma ABNT NBR 10151:2019 — <u>Avaliação do Ruído em Áreas Habitadas, visando o Conforto da Comunidade - Procedimento</u>. Para as medições foi utilizado o equipamento portátil medidor de nível de pressão sonora digital, comumente denominado decibelímetro conforme a figura 2. O aparelho utilizado apresenta o nível de pressão sonora equivalente, Leq, valor que é considerado para medições de ruído contínuo.

Figura 3: Decibelímetro

Marca: Instrutherm

Modelo: DEC – 500

Faixa de Medição: 30 a 130 d B

Curvas de Ponderação: A, C e Flat

Respostas: Fast e Slow

5. METODOLOGIA DE MEDIÇÃO

5.1 Ruído

As medições foram executadas no lado externo da edificação para comparação dos valores obtidos. As coletas foram feitas no período da tarde e noite. Nos locais analisados, o ruído tem característica constante, não apresentando ruídos de impacto, e foram obtidas por um medidor de pressão sonora no modo "Leq", na curva de compensação "A" e circuito de resposta "Slow" (lenta). O aparelho medidor de pressão sonora apresenta os resultados de Leq a cada minuto.

Apesar de ser caracterizado como contínuo, o ruído apresenta pequenas flutuações e, portanto, deve ser apresentado como Leq - Nível Médio de Som Contínuo Equivalente.

Nesse método de medição é obtido um nível de ruído contínuo que possui a mesma energia acústica que os níveis flutuantes originais, durante um período de tempo. Preveniu-se o efeito de ventos sobre o microfone com o uso de protetor, conforme instruções do fabricante. As medições foram em pontos afastados aproximadamente de 1,2 m do piso e pelo menos 2m do limite da propriedade e de quaisquer outras superfícies refletoras como muros, paredes e veículos.

Foram efetuadas 24 medições do nível de ruído em pontos no entorno do empreendimento em dois horários diurno e noturno, que pode ser visualizado na imagem a seguir do empreendimento com a descrição na tabela 1.

Figura 4:Imagem de satélite da empresa, com indicação dos pontos amostrados.

As medições foram realizadas de acordo com item 5.2 Medições no exterior de edificações da norma ABNT NBR 10151:2019. De acordo com a norma, as medições de ruído deverão ser realizadas 1,2 metros do limite da propriedade e de quaisquer outras superfícies refletoras, como muros e paredes. Desta maneira, conforme pode ser observado na tabela 1 abaixo, os valores foram obtidos mantendo a conformidade.

Tabela 1 – Caracterização dos pontos

Ponto	Caracterização dos pontos	
P1	Entrada – próximo a portaria	
P2	Limite propriedade - referência:- prédio administrativo	
P3	Limite propriedade - referência:- prédio administrativo	
P4	Limite propriedade - referência:- área vivência	
P5	Limite propriedade – entrada e saída de veículos grandes	
P6	Limite propriedade – referência:- coletor de lixo	
P7	Limite propriedade – referência:- Doca expedição	
P8	Limite propriedade – referência:- atrás da Doca expedição	
P9	Limite propriedade – referência:- antena	
P10	Limite propriedade – parte inferior	
P11	Limite propriedade – parte lateral esquerda	
P12	Limite propriedade – parte lateral esquerda – próximo a residências	
P13	Limite propriedade – parte lateral esquerda próximo ao fragmento	
P14	Limite propriedade – parte lateral esquerda próximo ao fragmento	
P15	Limite propriedade – parte lateral esquerda próximo ao fragmento	
P16	Limite propriedade – parte lateral esquerda próximo ao fragmento	
P17	Limite propriedade – parte superior	
P18	Limite propriedade – parte superior - referência: -teares	
P19	Limite propriedade – parte superior - referência: -teares	
P20	Limite propriedade – parte superior - referência: -teares	
P21	Limite propriedade – parte superior - referência: -teares	
P22	Limite propriedade – parte superior	
P23	Limite propriedade – parte superior	
P24	Limite propriedade – parte superior	

A ABNT NBR 10151:2019 tem como diretriz, limites de níveis de pressão sonora aceitáveis paradeterminadas áreas conforme a tabela 2 abaixo.

Tabela 2 - Limites de níveis de pressão sonora em função dos tipos de áreas habitadas e do período

Tipos de áreas habitadas	Diurno	Noturno
Área de residências rurais	40	35
Área estritamente residencial urbana ou de hospitais ou de escolas	50	45
Área mista predominantemente residencial	55	50
Área mista com predominância de atividades comerciais e/ou	60	55
administrativa		

Área mista com predominância de atividades culturais, lazer e

Área predominantemente industrial	70	60
turismo	65	55

6. RESULTADOS DA MEDIÇÃO DOS NÍVEIS DE RUÍDO

6.1 Ruído

De acordo com o plano diretor da cidade Bragança Paulista, a empresa Capricórnio está em seu legítimo direito de estar instalada no bairro em questão, pois o referido plano assegura a aprovação para o setor industrial. Para locais de predominância industrial, os índices de decibéis permitidos para o horário de funcionamento são de 70 decibéis diurno e 60 decibéis noturno. Os resultados obtidos nas medições estão relacionados na tabela 5 abaixo.

Tabela 3 – Resultados da Medição dos Níveis de Ruído diurno e noturno

M	Medição do som total e avaliação usando o método							
Ponto	Tempo de medição [h:min:seg]	L Aeq,T	L res	L _{esp}	RL Aeq	Ultrapassa a lei/norma	SELECIONE ÁREA CORRESPONDENTE AO PONTO DE MEDIÇÃO EM ESTUDO	SELECIONE O PERÍODO DA MEDIÇÃO
P1	00:05:00	53	53	40	70	NÃO	Área predominantemente industrial	Período Diurno
P2	00:05:00	70	61	69	70	NÃO	Área predominantemente industrial	Período Diurno
P3	00:05:00	58	45	58	70	NÃO	Área predominantemente industrial	Período Diurno
P4	00:05:00	61	67	58	70	NÃO	Área predominantemente industrial	Período Diurno
P5	00:05:00	61	75	58	70	NÃO	Área predominantemente industrial	Período Diurno
P6	01:05:00	58	0	58	70	NÃO	Área predominantemente industrial	Período Diurno
P7	02:05:00	56	0	56	70	NÃO	Área predominantemente industrial	Período Diurno
P8	03:05:00	64	0	64	70	NÃO	Área predominantemente industrial	Período Diurno
P9	04:05:00	57	0	57	70	NÃO	Área predominantemente industrial	Período Diurno
P10	05:05:00	53	0	53	70	NÃO	Área predominantemente industrial	Período Diurno
P11	06:05:00	52	0	52	70	NÃO	Área predominantemente industrial	Período Diurno
P12	07:05:00	54	0	54	70	NÃO	Área predominantemente industrial	Período Diurno
P13	08:05:00	52	0	52	70	NÃO	Área predominantemente industrial	Período Diurno
P14	09:05:00	64	0	64	70	NÃO	Área predominantemente industrial	Período Diurno
P15	10:05:00	58	0	58	70	NÃO	Área predominantemente industrial	Período Diurno
P16	11:05:00	63	0	63	70	NÃO	Área predominantemente industrial	Período Diurno
P17	12:05:00	70	0	70	70	NÃO	Área predominantemente industrial	Período Diurno
P18	13:05:00	67	0	67	70	NÃO	Área predominantemente industrial	Período Diurno
P19	14:05:00	71	0	71	74	NÃO	Área predominantemente industrial	Período Diurno
P20	15:05:00	75	0	75	76	NÃO	Área predominantemente industrial	Período Diurno
P21	16:05:00	75	0	75	76	NÃO	Área predominantemente industrial	Período Diurno
P22	17:05:00	70	0	70	70	NÃO	Área predominantemente industrial	Período Diurno
P23	18:05:00	67	0	67	70	NÃO	Área predominantemente industrial	Período Diurno
P24	19:05:00	52	0	52	70	NÃO	Área predominantemente industrial	Período Diurno

8. ANÁLISE DOS RESULTADOS

8.1 Ruído

Analisando os dados obtidos, verifica-se alguns pontos de maior geração de ruídos na área externa no período diurno e no período noturno. No período diurno o nível de referência (RLAeq) é de 70 a 76 decibéis sendo assim apenas os pontos não elevaram o nível de ruído

permitido comparados aos níveis de pressão sonora específicos (Lesp) conforme mostra o gráfico da figura 4 abaixo, assim, os pontos realizados no limite do empreendimento – de todos os setores gerados de ruídos, atendem o designado pela norma.

Gráfico 1 – Níveis de ruído no período diurno e noturno

Para os niveis de ruido noturno foram encontrados valores semelhentes aos diurnos porém acima do permitido na Norma ABNT NBR 10151:2019, apenas os pontos 3, 8 e 11 estão acima de 60 decíbeis comparados aos níveis de pressão sonora específicos (Lesp), conforme a figura 5 abaixo.

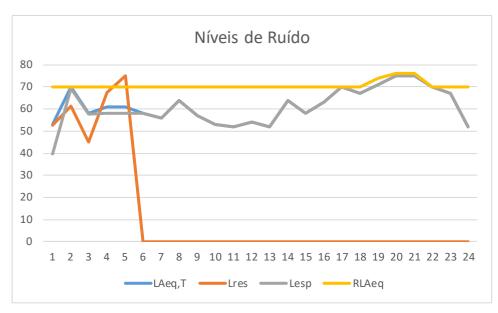


Figura 5: Gráfico - Níveis de ruído

Os pontos que ficaram acima do limite permitido tanto no período diurno como no período noturno, estão localizados em pontos críticos de máquinas e equipamentos.

9.CONCLUSÃO

9.1 Ruído

Na falta de valores de ruído para servirem de referência ao tempo de exposição, recomenda-se a Norma Regulamentadora nº 15 do Ministério do Trabalho e Emprego – Atividades e Operações Insalubres, norma esta que trata da segurança ao trabalhador exposto ao ruído contínuo e outras fontes de insalubridade. Especificamente, no anexo I da NR 15, é dado o valor do Limite de Tolerância para Ruído Contínuo ou Intermitente, ou seja, o tempo máximo de exposição diária. O primeiro valor que consta na tabela, é 85 dB para um tempo máximo de exposição de 8 horas diárias conforme a tabela 5 a seguir.

Tabela 5- Limites De Tolerância Para Ruído Contínuo Ou Intermitente

NÍVEL DE RUÍDO	MÁXIMA EXPOSIÇÃO DIÁRIA		
DB (A)	PERMISSÍVEL		
85	8 horas		
86	7 horas		
87	6 horas		
88	5 horas		
89	4 horas e 30 minutos		
90	4 horas		
91	3 horas e 30 minutos		
92	3 horas		
93	2 horas e 40 minutos		
94	2 horas e 15 minutos		
95	2 horas		
96	1 hora e 45 minutos		
98	1 hora e 15 minutos		
100 1 hora			
102	45 minutos		
104	35 minutos		
105	30 minutos		
106	25 minutos		
108	20 minutos		
110	15 minutos		
112	10 minutos		
114	8 minutos		
115	7 minutos		

Diante dos fatos e analisando os resultados obtidos, nota-se que o ruído gerado pelo empreendimento, encontra-se bem abaixo do limite considerado insalubre pela norma em questão de saúde ocupacional, bem como, não irá interferir no entorno, dado que se trata de

pontos que se encontram no limite interno do empreendimento, uma vez que os valores obtidos nos limites das propriedades estão em conformidade com a referida norma.

Ressalta-se que a localização do empreendimento é em uma rodovia com outras atividades comerciais e industriais que também contribuem para a geração de ruídos, bem como, há também movimentação de outros veículos nas vias públicas.

Portanto, conclui-se que os valores de ruído gerados, não serão causadores de infortúnios aos vizinhos.

9.2 Vibração

Os valores encontrados para os limites de vibração, estão todos abaixo dos valores indicadospela Companhia Ambiental do Estado de São Paulo (CETESB) e a Norma de Higiene Ocupacional (NHO) 09.

10. ENCERRAMENTO

Este laudo foi realizado de forma imparcial, com o intuito de elucidar os fatos e de

demostrarde forma quantitativa, os valores reais, por meio da utilização dos equipamentos

devidamente calibrados de acordo com a ABNT NBR 10151:2019 e recomendações da CETESB,

desta maneira comprova-se de que os níveis emitidos de ruído e vibração apontados pelos

equipamentos utilizados são verídicos e retratam a realizada do empreendimento.

A Responsável Técnico coloca-se à disposição para quaisquer esclarecimentos.

Bianca Simoni

Engenheira Agrônoma/ Engenheira de Segurança do Trabalho

CREA: - 5361453275

ART n⁰ 28027230220483069

ISEG Corporation Ltda

Dezembro, 2023.

Laudo Ambiental de Vibração

Capricórnio Têxtil S.A.

Avenida Minas Gerais, 1240 | Bragança Paulista - SP, CEP: 12.910-411

Responsável Técnico:

Bianca Simoni Kancelkis – Engenheira Agrônoma

Mestra em Ciências Naturais/Geotecnia Ambiental – CREA/SP: 5061453273

Equipe Técnica:

Mariana da Silva Baldini -Engenheira Ambiental/CREA – SP: 5070139694

Sheila Mendes de Almeida Silva – Técnica em Segurança do Trabalho/ MTE: 0110829/SP

Sumário

	Responsavel Técnico:	2
	Equipe Técnica:	
1.	OBJETO	4
2.	DESCRIÇÃO DO LOCAL	4
	CARACTERIZAÇÃO DO ENTORNO	
	· · · · · · · · · · · · · · · · · · ·	
	INSTRUMENTAÇÃO UTILIZADA	
	4.2 Vibração	5
5.	Resultados	6
	CONCLUSÃO	
	6.2 Vibração	7
7	FNCERRAMENTO	8

1. OBJETO

Este laudo tem o objetivo de aferir o nível de ruído gerado pelas atividades da empresa que possa importunar os habitantes do entorno e, poderá ser integralizado no Estudo de Impacto de Vizinhança (EIV).

Baseado nos resultados deste laudo, será possível detalhar as soluções para minimizar a vibração que possa vir a prejudicar os moradores próximos ao local de instalação da sededa empresa Capricórnio Textil S/A, localizada na Avenida Minas Gerais, 1240 - Bragança Paulista, SP - CEP: 12910-411.

2. DESCRIÇÃO DO LOCAL

A área da empresa tem em média 39.972 m². A empresa é composta por portaria, escritório, setores de fabricação dos tecidos e setor de armazenamento dos rolos de tecidos. O horário de funcionamento é das 07:00 horas às 07:00 horas.

3. CARACTERIZAÇÃO DO ENTORNO

A Capricórnio Têxtil está localizada na ZDE 2 - Zona de Desenvolvimento Econômico 2, que corresponde às porções do território situadas ao longo das principais rodovias do município destinadas à implantação de usos e atividades destinadas ao fomento industrial. Ao seu redor estão localizadas outras unidades fabris, conforme a figura 1 abaixo.

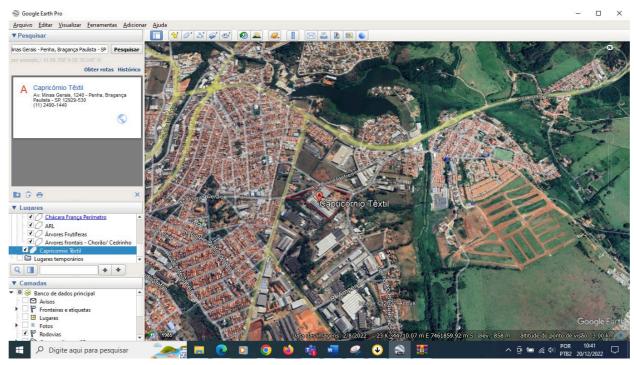


Figura 1: Localização da empresa Capricórnio -Fonte: Google Earth – WGS84

Figura 2: Recorte localização e entorno da empresa Capricórnio Têxtil.

4. INSTRUMENTAÇÃO UTILIZADA

4.2 Vibração

As medições de nível de vibrações foram realizadas respeitando as recomendações da Cetesb - DECISÃO DE DIRETORIA Nº 215/2007/E, de 07 de novembro de 2007. Para as medições foi utilizado o equipamento portátil medidor de vibrações digital, comumente denominado acelerômetro conforme a figura 3.

Figura 3: Medidor de vibrações digital

Marca: Benetech

Modelo: GM63A

Tipo: Locais internos e externos

IH: 1926130

Coletor de vibração: acelerômetro piezoelétrico de cerâmico (tipo tesoura)

Faixa de medição de aceleração: pico de 0.1~199.9m/s

Faixa de medição de velocidade: 0.1~199.9mm/s ms

Faixa de medição de deslocamento: 0.001 ~ 1.999 mm gama de velocidade e

deslocamento p-p é limitada pela acceleration 199.9m/s $^{\rm 2}$

Precisão da medição: ± 5% ±2digits

5. Resultados

O ponto de menor vibração foi o ponto 1, que é o de maior distância do principal pavilhão de maquinários, porém, os demais pontos tiveram os mesmos limites encontrados conforme a tabela abaixo.

Tabela 1: Valores de Vibração

	Criterios				
Pon	Pon AREN VDVR				
to	(m/s²)	(m/s ^{1,75})			
1	0,00	0,30			
2	0,00	0,40			
3	0,00	0,40			
4	0,00	0,40			
5	0,00	0,40			
6	0,00	0,40			
7	0,00	0,40			
8	0,00	0,40			
9	0,00	0,40			
10	0,00	0,40			
11	0,00	0,40			
12	0,00	0,40			

6. CONCLUSÃO

6.2 Vibração

Os parâmetros estabelecidos pela Diretoria de Diretoria da Cetesb, são apresentados na imagem da figura abaixo.

Limites de Velocidade de Vibração de Partícula – Pico (mm/s)				
Tipos de áreas Diurno (7:00 às 20:00) Noturno (20:00 às 7:00)				
Áreas de hospitais, casas de saúde, creches e escolas	0,3	0,3		
Área predominantemente residencial	0,3	0,3		
Área mista, com vocação comercial e administrativa	0,4	0,3		
Área predominantemente industrial	0,5	0,5		

Figura 4: Parâmetros de vibração estabelecidos pela Cetesb

A empresa Capricórnio se encontra em área com predominância industrial, de acordo com o zoneamento, desta maneira, conforme pode ser observado, os valores obtidos no ensaio de vibração ficaram abaixo do estabelecido pela Cetesb, portanto, não há ocorrência não conformidade.

7. ENCERRAMENTO

Este laudo foi realizado de forma imparcial, com o intuito de elucidar os fatos e de demonstrar de forma quantitativa, os valores reais, por meio da utilização do equipamento devidamente calibrado de acordo com a ABNT NBR 17025:2017 e DECISÃO DE DIRETORIA № 215/2007/E, de 07 de novembro de 2007 da CETESB, desta maneira comprova-se de que os níveis emitidos de vibração apontados pelo equipamento utilizado é verídico e retrata a realidade do empreendimento.

A Responsável Técnico coloca-se à disposição para quaisquer esclarecimentos.

Bianca Simoni

Engenheira Agrônoma

CREA: - 5361453275

ART n⁰ 28027230222040591

ISEG Corporation Ltda

BIANCA SIMONI:17540520

Assinado de forma digital por BIANCA

540520884 Dados: 2023.06.06

11:59:49 -03'00'

São Carlos, 31 de maio de 2023.

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

ART de Obra ou Serviço 28027230230872342

Conselho Regional de Engenharia e Agronomia do Estado de São Paulo

Substituição retificadora à 28027230222040591

			Substituição r	etificadora a 280	127230222040591	
1. Res	sponsável Técnico —					
BIANCA SIMO	NI					
	Engenheira Agrônoma			RNP: 26088666	89	
				Registro: 5061453273-SP		
Empresa Contratada:	ISEG CORPORAT	ION LTDA	Registro: 2329210-SP			
	los do Contrato			ODE/OND L CO 7/	IE 411/000C 40	
Contratante: Capri					15.411/0006-42	
=	da MINAS GERAIS		Bairro: JARDIM DOU	N°: 1240 TOD UU IO DE N	IECOLUTA EU HO	
Complemento: Cidade: Bragança	. Paulieta		UF: SP	CEP: 12910-41		
Contrato:	raulista	Calabrada am. 05/11/2022	Vinculada à Art n°:	CLF. 12910-41	•	
Valor: R\$ 5.877,61		Celebrado em: 25/11/2022 Tipo de Contratante: Pessoa Jurídica o				
Ação Institucional		ripo do Comitatamo. Posoca Cariarca C	20 Bilono i ilvado			
Ação institucional						
3. Dade Endereço: Avenida M	os da Obra Serviço ——			N°: 1240		
complemento:	IIIAO GENAIO		Bairro: JARDIM DOUTO		ILIITA FII HO	
Cidade: Bragança Paulista			UF: SP	CEP: 12910-4		
Data de Início: 25/11/2022			01 . 01	OE1 : 12310-4		
revisão de Término:						
coordenadas Geográf	icas:					
ïnalidade:				Código:		
				CPF/CNPJ:		
4. Ativ	idade Técnica					
				Quantidade	Unidade	
Elaboração						
1	Laudo	de controle ambiental	controle de poluição ambiental	15,00000	hora	
	Após a conclusão	das atividades técnicas o profissional	deverá proceder a baixa (desta ART		
		· ·	<u> </u>			
5. Observ	vaçoes					
Esta ART destina-se a	elaboração de Laudo para c	ontrole ambiental de níveis de ruído e vibração,	com início em novembro de 20)22 até o mês de maio	de 2023.	
6. Declara	ções					

Acessibilidade: Declaro que as regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº 5.296, de 2 de dezembro de 2004, não se aplicam às atividades profissionais acima relacionadas.

Resolução nº 1.025/2009 - Anexo I - Modelo A

Página 2/2

7. Entidade de Classe				
0-NÃO DESTINADA				
Declaro serem verdadeiras as informações acima de forma digital por BIANCA de BIANCA SIMON 12540520884 SIMARIN 1.17540520884 Dados 2023.06.06 12:00:37				
SIM@NI:17540520884 Dados 2023.06.06 12:00:37 -03'00'				
BIANCA SIMONI - CPF: 175.405.208-84				
Capricórnio Textil - CPF/CNPJ: 60.745.411/0006-42				

9. Informações

- A presente ART encontra-se devidamente quitada conforme dados constantes no rodapé-versão do sistema, certificada pelo *Nosso Número*.
- A autenticidade deste documento pode ser verificada no site www.creasp.org.br ou www.confea.org.br
- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

Nosso Numero: 28027230230872342

Valor Pago R\$ 0,00

www.creasp.org.br Tel: 0800 017 18 11 E-mail: acessar link Fale Conosco do site acima

Versão do sistema

Registrada em: 06/06/2023 Impresso em: 06/06/2023 11:54:55

Valor ART R\$ 0,00

CAPRICORNIO TEXTIL S.A

Bragança Paulista - SP

RELATÓRIO DE MONITORAMENTO DE EMISSÕES ATMOSFÉRICAS

NÚMERO DO RELATÓRIO:	RMEA 082.23.280-Rev.00	
JOB:	280	
PONTO DE AMOSTRAGEM:	Chaminé Caldeira GLP	

Junho/2023

Rua Dalmo Alves, 258, Vila Geny – Lorena/SP – CEP: 12604-180 – PABX (12)3152-9024 – prisma@prismaambiental.com.br

ÍNDICE

I	DADOS CADASTRAIS	3
2	INTRODUÇÃO	4
3	PARÂMETROS AMOSTRADOS E METODOLOGIAS	5
3.1	Estratégia de amostragem	ϵ
4	DADOS OPERACIONAIS DA FONTE MONITORADA	7
5	RESULTADOS DO CHAMINÉ CALDEIRA GLP	8
Tab	ela 1 – OXIDO DE NITROGENIO	8
6	TABELA COMPARATIVA	g
7	COMENTÁRIOS	10
8	INFORMAÇÕES ADICIONAIS	11
9	TERMO DE RESPONSABILIDADE SOBRE AS INFORMAÇÕES	12
10	PLANILHAS DE CAMPO	13
11	RELATÓRIO DE ENSAIO	14
12	CERTIFICADO DE CALIBRAÇÃO	16
13	ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA E CERTIFICADO DE ACREDITAÇÃO	17

1 DADOS CADASTRAIS

	DADOS DO CONTRATANTE									
Razão Social:	Razão Social: ISEG Corporation Ltda									
Endereço:	Rua São Sebatião, 2584 - Centro -	São Carlos – SP – CEP.:	13.560-230							
CNPJ:	40.547.067/0001-65	Inscrição Estadual:	637.551.089.113							

	DADOS DA CONTRATADA											
Razão Social:	Razão Social: PRISMA Soluções Ambientais Ltda											
Endereço:	Endereço: Rua Dalmo Alves, 258 - Vila Geny - Lorena – SP - CEP: 12.604-180											
CNPJ:	CNPJ: 08.957-064/0001-97 Inscrição Estadual: 420.140.530.118											
	EQUIPE TÉCNICA R	ESPONSA	VEL PELA AMOSTRAGEM	I								
Felipe Au	ugusto Chaves Vitorio		André Ro	odrigues Alves								
	RESP	ONSÁVE	LTECNICO									
	Nome		Função	Registro profissional								
André Ro	odrigues Alves	Eng. An	nbiental e Sanitarista	CREA: 5062053800								

	LOCAL DA REALIZAÇÃO DAS AMOSTRAGENS E ENSAIOS DE CAMPO											
Razão Social:	CAPRICORNIO TEXTIL S.A											
Endereço:	Avenida Minas Gerais N° 1240 Jardim -Doutor Júlio De Mesquita Filho - Cep: 12910411 – Bragança Paulista / SP											
CNPJ:	60.745.411/0006-42 Telefone: (16) 99172-6460											
Responsável Técnico:	André Roc	drigues Alves										
	LOCA	L DA REALIZAÇÃO DOS I	ENSAIOS LABORATORIAI	s								
Razão Social:		PRISMA Soluções Amb	oientais Ltda		■\$ \$\$\$€							
CNPJ: 08.957-064/0001-97												
Laboratório de ense O escopo de acrec		ado na norma ABNT NBI e ser visto em	R ISO/IEC 17025									

FOR.REL.002-01 Página 3 de 17

2 INTRODUÇÃO

No dia 14 de Junho de 2023, a PRISMA Soluções Ambientais Ltda., realizou o monitoramento de poluentes atmosféricos na Chaminé Caldeira GLP.

O objetivo desta avaliação foi verificar a concentração de poluentes atmosféricos dos seguintes parâmetros:

- Óxidos de Nitrogênio (NOx)

Todas as atividades foram rigidamente realizadas conforme Decisão de Diretoria 10-P da CETESB de 12 de Janeiro de 2010.

3 PARÂMETROS AMOSTRADOS E METODOLOGIAS

Os métodos empregados são da CETESB – Companhia de Ambiental do Estado de São Paulo e da "USEPA - Environmental Protection Agency of United States of America", listados a seguir:

USEPA 1 e CETESB L9.221 Pontos de amostragens:

Com base no diâmetro da chaminé/duto, na localização do bocal de coleta, será calculado com base no mosaico contido no método os pontos de amostragem.

USEPA 2 e CETESB L9.222 Velocidade e vazão dos gases:

Através da umidade, diferenciais de pressão dos gases na chaminé/duto, pressão barométrica, temperatura dos gases na chaminé/duto é determinada a velocidade através de cálculo conforme metodologia.

USEPA 3 e CETESB L9.223 Massa molecular seca e do excesso de ar do fluxo gasoso:

Com base nos resultados de CO, CO₂ e O₂, obtidos através do método CETESB L9.210, e resultado de umidade através do método CETESB L9.224, é determinado as massas moleculares através de cálculo.

USEPA 4 e CETESB L9.224 Umidade dos efluentes:

São utilizadas 4 (quatro) técnicas diferentes para a determinação da umidade, sendo: método de referência; método de fluxo saturado ou com gotículas; método aproximado e método de bulbo úmido e bulbo seco. A Prisma Ambiental realizará o método de referência, onde a massa de água é condensada nos borbulhadores e retida em sílica gel, através da diferença das massas iniciais e finais, a umidade é determinada através de cálculo.

USEPA 7 e L9.229 Óxidos de nitrogênio (NOx):

Os óxidos de nitrogênio (NOx) presentes no fluxo gasoso são coletados em balões de fundo redondo de 2 (dois) litros contendo solução absorvedora de ácido sulfúrico com peróxido de hidrogênio. A determinação dos óxidos de nitrogênio é feita por espectrofotometria de absorção no visível, empregando-se o método do ácido fenoldissulfônico

FOR.REL.002-01 Página 5 de 17

3.1 Estratégia de amostragem

Chaminé de d	Chaminé de caldeira GLP							
Singularidade	Diâmetro interno:	0,50						
Secção transversal	Montante (Distância A)	1,70						
	Jusante (Distância B)	4,10						
В	N° de eixos amostrados:	2						
Singularidade	N° de pontos amostrados por eixo:	6						
	Tempo total de coleta:	60 min						

Os pontos de amostragem estabelecidos para as medições ficaram da seguinte forma:

Detalhe da disposição dos pontos	N° de Pontos	Distância (cm)
	1	2,2
	2	7,3
	3	14,8
	4	35,2
	5	42,7
	6	47,8

4 DADOS OPERACIONAIS DA FONTE MONITORADA

DADOS OFERACIONAIS DA FONTE MONTORADA								
Dados	da Fonte							
Identificação: Caldeira Movida a gás GLP								
TAG (Placa de Identificação): CAPRICORNIO S/A 001166	Série: 11.012.							
Modelo: 5.5M.	Ano de Instalação: 2010.							
Com	bustível							
Tipo: Gás natural.	Consumo: Não Aplicado							
Sistema de Trat	amento de Gases							
Tipo (lavador, filtro, depositador, ciclone): Não	temos.							
Outros (pH, qtd mangas, qtd bags entre outros): Não Aplicado							
Dados d	lo Processo							
1. O que é produzido: Vapor.								
2. Quantidade Produzida: 6900 h/ano								
 Tipos de Reagentes e Produtos Utilizados: CONDIXIONADOR DE LAMA FX 48 ALCALINIZANTE Soda Cáustica SEQUESTRANTE DE OXIGÊNIO FX32SL ALCALINIZANTE DE VAPOR SLCC-D Quantidade de Reagentes e Produtos Utilizamês, Respectivamente 	ados: 270kg/mês, 150kg/mês, 100Kg/mês, 30Kg/							
5. Horas Totais (anual): 6900 h/ano								

Nota: Dados operacionais não fornecidos pelo contratante

5 RESULTADOS DO CHAMINÉ CALDEIRA GLP

Tabela 1 - OXIDO DE NITROGENIO

		INFORMAÇÕES DA COLETAS									
Descrição		1ª Coleta	2ª Coleta	3ª Coleta	4ª Coleta	5ª Coleta	6ª Coleta	7ª Coleta	8ª Coleta	9ª Coleta	
Data			14/06/23			14/06/23			14/06/23		
Hora		9:30	9:45	10:00	10:15	10:30	10:45	11:00	11:15	11:30	
Identificação do balão		1	2	3	4	5	6	7	8	9	
Volume do balão (ml)		2225	2215	2300	2915	2250	2260	2275	2200	2260	
Pressão do balão Inicial (mmHg)	55,39	42,39	39,39	36,39	42,39	38,39	45,39	50,39	47,39	
Temperatura inicial do balão (°C	C)	23	23	25	24	24	26	25	25	26	
Pressão atmosférica (mmHg)		Coleta:		716,32		Recupe	eração:		712,56		
Pressão do balão final (mmHg)		709,62	708,00	710,79	709,03	706,68	709,99	709,03	706,02	709,35	
Temperatura final do balão (°C)		22	23	21	22	22	21	22	22	21	
Volume do gás coletado - CNTF	² (ml)	2159,99	2069,13	2415,06	2919,70	2221,75	2377,08	2250,96	2151,83	2349,39	
PARÂMETROS	UNIDADE					Resultados					M
Diâmetro da chaminé	m					0,50					(
Temperatura	°C					108,83					10
Umidade	%vol					3,00					
Velocidade	m/s					4,61					4
Q - Vazão	m³/h					3258,73					32
Qnbs - Vazão	Nm3/h					2130,41					21
Oxigênio	%					12,50					1
Dióxido de Carbono	%					2,60					2
	Massa µg	312,58	166,59	205,01	508,80	104,33	108,67	172,50	233,97	244,61	22
Óvidas da Nitra gânia (NO:	C (mg/Nm³) (1)	144,71	80,51	84,89	174,26	46,96	45,72	76,63	108,73	104,12	9
Óxidos de Nitrogênio (NOx)	Te (kg/h) (1)	0,31	0,17	0,18	0,37	0,10	0,10	0,16	0,23	0,22	(
expresso com NO ₂	C (mg/Nm ³)	306,45	170,50	179,76	369,03	99,44	96,81	162,28	230,25	220,48	20
	Te (kg/h)	0,653	0,363	0,383	0,786	0,212	0,206	0,346	0,491	0,470	C

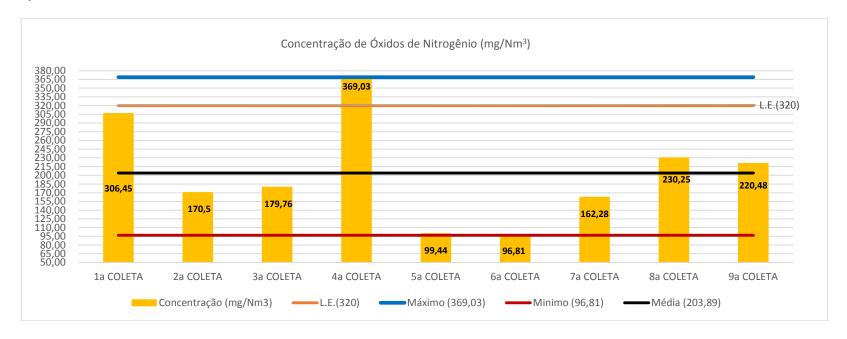
Legenda:

- (1) Concentração nas Condições Normais de Temperatura e Pressão CNTP (0°C e 760 mmHg), base seca
- (2) Concentração nas \underline{C} ondições \underline{N} ormais de \underline{T} emperatura e \underline{P} ressão CNTP (0°C e 760 mmHg), base seca, corrigido a 3% de O_2

Rua Dalmo Alves, 258, Vila Geny – Lorena/SP – CEP: 12604-180 – PABX (12)3152-9024 – prisma@prismaambiental.com.br

FOR.REL.002-01

Página 8 de 17


6 TABELA COMPARATIVA

Para a comparação dos resultados das emissões atmosféricas de Nox foram utilizados os limites de emissão preconizados na Resolução CONAMA 382 de 26 de Dezembro de 2006, para poluentes atmosféricos provenientes de processos de geração de calor a partir da combustão externa de Gás Natural.

PARAMETRO	UNIDADE	1ª Coleta	2ª Coleta	3ª Coleta	4ª Coleta	5ª Coleta	6ª Coleta	7ª Coleta	8ª Coleta	9ª Coleta	Média	L.E.
Óxido de Nitrogênio	C (mg/Nm ³) (1)	306,45	170,50	179,76	369,03	99,44	96,81	162,28	230,25	220,48	203,89	320 ⁽²⁾

⁽¹⁾ Concentração nas Condições Normais de Temperatura e Pressão - CNTP (0oC e 760 mmHg), base seca, corrigido a 3% de O2

⁽²⁾ Resolução CONAMA 382 de 26 de Dezembro de 2006, Anexo II

Rua Dalmo Alves, 258, Vila Geny - Lorena/SP - CEP: 12604-180 - PABX (12)3152-9024 - prisma@prismaambiental.com.br

FOR.REL.002-01

Página 9 de 17

7 COMENTÁRIOS

Os resultados das emissões atmosféricas da Chaminé da Caldeira GLP estão em conformidade com a Resolução CONAMA 382 de 26 de Dezembro de 2006, por apresentar o parâmetro de Óxidos de Nitrogênio abaixo do limite máximo permitido.

Salientamos que este relatório pode ser submetido à apreciação do órgão ambiental para interpretação e que os resultados apresentados têm significação restrita e referem-se somente as condições do efluente gasoso da Chaminé da Caldeira GLP no dia monitorado.

8 INFORMAÇÕES ADICIONAIS

- -Os resultados apresentados se referem apenas às amostras coletadas e ensaiadas.
- -O presente Relatório de Ensaio só deve ser reproduzido por completo. A reprodução parcial requer aprovação por escrito deste laboratório.
- -Condições ambientais no momento dos ensaios, métodos de coleta, equipamentos utilizados, estimativas de incerteza e outras informações estão à disposição para serem solicitadas a qualquer momento pela contratada.
- -Para a comparação dos resultados apresentados neste Relatório de Estudo foram utilizados os critérios de conformidade definidos pelas Normas/legislação de interesse e sem a atribuição das incertezas expandidas sobre os resultados obtidos, os cálculos foram realizados e poderão ser solicitados pela contratante a qualquer momento.
- -As fontes de incerteza mais comuns associadas à realização das atividades de amostragens estão no anexo deste relatório (certificados de calibração dos equipamentos utilizados e laudos analíticos).
 - -Este relatório atende aos requisitos de acreditação da Cgcre, que avaliou a competência do laboratório.
- -Relatório aprovado conforme especificações comerciais, com base nos documentos do Sistema de Gestão da Qualidade.

9 TERMO DE RESPONSABILIDADE SOBRE AS INFORMAÇÕES

A Capricórnio Textil S.A, em conjunto com André Rodrigues Alves, responsável técnico, representante da empresa Prisma Soluções Ambientas Ltda., em atendimento ao disposto na decisão da Diretoria 069/2016/P, de 12/04/2016, declaram sob as penas da lei e responsabilidade penal que todas as informações prestadas à CETESB – Companhia Ambiental do Estado de São Paulo, nos estudos ora apresentados no Relatório de Monitoramento de emissões Atmosféricas são verdadeiras e contemplam integralmente as exigências estabelecidas pela CETESB.

Lorena, 26 de Junho de 2023

Responsável Legal Nome: CPF: André Rodrigues Alves Eng. Ambiental e Sanitarista (REA 5062053800) Responsável Técnico Nome: André Rodrigues Alves

CPF: 280.068.888-25

10 PLANILHAS DE CAMPO

4	prisma ambiental			PLAN	NILHA DE CA PRELIA JOB [AMENTO			NBR ISC 170	O/IEC 26	
Equipe	Felipe/Andr	е								CRL 0	700	
Empresa	Iseg Corpor	ation Ltda							m	Ø		
Local	Chamine do	caldeira (combustivel GLP) Montante 1,70							3,4			
Data		14/06/23		Hora	09	2:00	Jusa	nte	4,10	8,2	2	
2002242	-					revicion :	Ø Duto/Cho	miné (m):	0.50	Eq ()	
			Eixo	Α			Eixo		10.500,000		N.S.	
Ponto	Sonda (cm)	ΔP(mmCA)	√∆P(Pa)	Pe(mmCA)	T(°C)	ΔP(mmCA)	√∆P(Pa)	Pe(mmCA)	T(°C)	Méd	ias	
1	2,2	1,5	3,83	1,0	108	1,5	3,83	1,0	108	ΔP(mmCA)	1,25	
2	7,3	1,5	3,83	1,0	108	1,5	3,83	1,0	108	Pe(mmCA)	0.92	
3	14,8	1,5	3,83	1,0	108	1,5	3,83	1,0	109	T(°C)	108,83	
4	35,2	1,0	3,13	1,0	109	1,0	3,13	1,0	109	1,(10)		
5	42,7	1,0	3,13	1,0	109	1,0	3,13	0,5	110	Méd	ias	
6	47,8	1,0	3,13	1,0	110	1,0	3,13	0,5	110	ΔP(Pa)	12,25	
7	47,0	1,0	0,10	1,0	110	1,0	0,10	0,0	110	Pe(Pa)	8,98	
8	1							 		T(K)	381,98	
9	1						6	+		√ΔP(Pa)	3,48	
10	+ -							1	-	VΔP(Pa) Mat		
	1							+		Man	12	
11	-			1				+		0	Lacro	
12	1		0.15		105		0		100	Comprim.	Largur	
M	\édia	1,25	3,48	1,00	108,67	1,25	3,48	0,83	109,00			
					Dados o	la Fonte						
Pressão	Barométrica F	Patm (hpa)	955	Patm/hpc	ST 2007 DOM: NO.	PatmmmHg	mmC 4=9 8P a	mmCA=0	0734mmHg	mmHg=1	33 1Pa	
) Patm (ı			6,32	2) Patm (f			41,77	3)∆H@(Po	BURNING CONTRACTOR		00,11 0	
) P(Pa)=F		100	50.76		=Patm+ΔH@	53100.00	-	6) AH@(m		-		
) P(mmH		(A)	6,38	8) Pg(Hg)	-i dirii die		_	9) Bag	ПСА	0,0		
0) MMu	19)		5,99	11) Cp		0.1	843	12) Tg(K)		295,		
CO _{2%}	MMs x (1-Bag)+	2,6 (18 x Bag)	O _{2%}	200		CO ppm 0,44(%CO ₂)+0 le Média (m/s		B(%N ₂)+0,28	N _{2%} (%CO)	27,2	26	
	128,9	6 x CP X	√P		— X ra		•)	1 1				
						ιz ΔΡ(Ρα)		v (m/s)		4,61		
				143	<u> </u>			v (m/s)		4,61		
				14)	Diâmetro do	ız ΔP(Pa) a Boquilha (m		185				
16	4,867 x ($2m (m^3)$	x Pg(P			a Boquilha (m	Qm (m³)		2		
164	4,867 x (Tg(k) x	Qm (m ³) CP x (1 -	x Pg(Pa		Diâmetro do $T(K) \times MM$ $(Pa) \times \Delta P($	a Boquilha (m	Qm (Ø calc	m³) ulado		2		
V	_			<u>a)</u> x \[P	$\frac{T(K) \times MN}{(Pa) \times \Delta P}$	a Boquilha (m <u>fu</u> Pa)	Qm (Ø calc Ø Utili:	m³) ulado zado		8		
164	4,867 x (Tg(k) x	Qm (m ³) CP x (1 - F=25	x Pg(Po-Bag)		T(K) x MM	a Boquilha (m <u>fu</u> Pa)	Qm (Ø calc	m³) ulado	Cianetos=28	8		
V	_			(a) x \(\begin{array}{c} P \\ SOx= 21 \end{array}	$T(K) \times MN$ $(Pa) \times \Delta P$ Metais = 28	a Boquilha (m <u>fu</u> Pa)	Qm (Ø calc Ø Utili: SVOC= 27	m³) ulado zado	Cianetos=28	8		
L/min	_	F ⁻ = 25	NH ₃ = 27	SOx= 21 15) Co	$T(K) \times MN$ $(Pa) \times \Delta P$ Metais= 28 Instante de P $(P(mmHg) \times (P(mmHg)) \times (P(mmHg))$	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid	Qm (Ø calc Ø Utili: SVOC= 27	m³) ulado zado	Cianetos=28	8		
L/min	MP= 21	F ⁻ = 25	NH ₃ = 27	SOx= 21 15) Co	$T(K) \times MN$ $(Pa) \times \Delta P(M)$ Metais= 28	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid	Qm (Ø calc Ø Utili: SVOC= 27	m³) ulado zado	Cianetos=28	8		
L/min	MP= 21	F'= 25	NH ₃ = 27	SOX= 21 15) Co 15 x Tg(K) x T(K) Pg(T	$T(K) \times MN$ $(Pa) \times \Delta P$ Metais= 28 Instante de P $(P(mmHg) \times (P(mmHg)) \times (P(mmHg))$	a Boquilha (m 1u Pa) HCI/Cl ₂ =14 Toporcionalid	Qm (Ø calc Ø Utili SVOC= 27 ade K	m³) ulado zado D&F= 27				
L/min 8,03	MP= 21	F= 25	x Db4 x MM MMu Šes da chami	SOx= 21 15) Co 15 x Tg(K) x T(K) Pg(I	$T(K) \times MN$ $(Pa) \times \Delta P$ Metais= 28 Instante de P $(P(mmHg) \times (P(mmHg)) \times (P(mmHg))$	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid 1-Bag) ²	Qm (Ø calc Ø Utili SVOC= 27 ade K	m³) ulado zado D&F= 27	lormal Base	Seca (Nm³/h)	
L/min 8,03	MP= 21 35.10-5 x ΔH@(m 16) Vazã: m²) = (② Duto	F= 25 nmCA) x Cp2 o nas condiç /Chaminéj² >	NH ₃ = 27 x Db4 x MM MMu Ses da chami (3,14 =	SOX= 21 15) Co 15 X Tg(K) X T(K) Pg(né (m³/h) 0,1	T(K) x MM (Pa) x ΔP (Metais= 28 Instante de P (mmHg) x (mmHg) 963	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid 1-Bag) ²	Qm (Ø calc Ø talc Ø thik SVOC= 27 ade K Vazão nas a Qnos(nm²/n)	m³) ulado zado D&F= 27	lormal Base [m ⁻⁷ n] x P[i	Seca (Nm³/h)	
L/min 8,03	MP= 21 35.10-5 x ΔH@(m 16) Vazã: m²) = (② Duto	F=25 mmCA) x Cp2 o nas condiç o/Chaminé) ² x 4	NH ₃ = 27 x Db4 x MM MMu Ses da chami (3,14 =	SOX= 21 15) Co 15 X Tg(K) X T(K) Pg(né (m³/h) 0,1	T(K) x MM (Pa) x ΔP (Metais= 28 Instante de P (mmHg) x (mmHg) 963	Boquilha (m Tu Pa) HCI/Cl ₂ =14 roporcionalid 1-Bag) ²	Qm (Ø calc Ø talc Ø thik SVOC= 27 ade K Vazão nas a Qnos(nm²/n)	m³) ulado zado D&F= 27 Double Transporter	lormal Base [m ⁻⁷ n] x P[i	Seca (Nm³/h)	
L/min 8,03 A (A (m ² /h) =	MP= 21 35.10-5 x ΔH@(m 16) Vazã: m²) = (② Duto	F=25 mmCA) x Cp2 o nas condiç o/Chaminé) ² x 4	NH ₃ = 27 x Db4 x MM MMu Ses da chami (3,14 =	SOX= 21 15) Co 15 X Tg(K) X T(K) Pg(né (m³/h) 0,1	$T(K) \times MM$ $(Pa) \times \Delta P(M)$ Metais = 28 Instante de P $(PmmHg) \times (PmmHg)$ (963 8) Quadrad 0,00	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid 1-Bag) ² 17 Q a/Retangular Qnbs(Qm (Ø calc Ø talc Ø thik SVOC= 27 ade K Vazão nas a Qnos(nm²/n)	m³) ulado zado D&F= 27 Double Transporter	lormal Base (m*/n) x P(r T(K)	Seca (Nm³/h)	
8,03 A (Q (m ² /h) =	MP= 21 35.10-5 x ΔH@(m 16) Vazãa m²) = [Ø Duto	F=25 nmCA) x Cp2 o nas condiç (/Chaminé) ² y 4 m ²) x v (m/s) y	NH _s = 27 x Db4 x MM MMu Ses da chami (3,14 =	2) x P 15) Co 15) Co 1(k) Pg(né (m³/h) 0,1 Q(m³/h)	T(K) x MM (Pa) x \(\Delta P \) Metais = 28 Instante de P (mmHg) x (mmHg) 1963 58,73 0,00 OBSERV	a Boquilha (m fu Pa) HCI/Cl ₂ =14 roporcionalid 1-Bag) ² 17 (a) Q a/Retangular Qnbs(AÇOES	Qm (Ø calc Ø Utilit SVOC= 27 lade K k Vazão nas canos (Nm²/n)	m³) ulado tado D&F= 27	lormal Base (m·7n) XP(i T(K)	Seca (Nm³/h 'a) x (1-8ag) 2130,41)	
8,03 A (Q (m ³ /h) =	MP= 21 35.10-5 x ΔH@(m 16) Vazãa m²) = [Ø Duto	F=25 nmCA) x Cp2 o nas condiç (/Chaminé) ² y 4 m ²) x v (m/s) y	NH _s = 27 x Db4 x MM MMu Ses da chami (3,14 = <3600	a) x P 15) Co 15) Co 15 (x) Pg(16 (m³/h) 0,1 20(m³/h) 1 Q(m³/h) Pitot = 219/	T(K) x MM (Pa) x \(\Delta P \) Metais = 28 Instante de P (mmHg) x (mmHg) 1963 58,73 0,00 OBSERV	a Boquilha (m fu Pa HCI/Cl ₂ =14 roporcionalid 1-Bag) ² 17 Q q/Retangular Qnbs(AÇOES	Qm (Ø calc Ø Utilit SVOC= 27 ade K k Vazão nas (Nm³/n) = Nm³/h) =	m³) ulado tado D&F= 27	iormal Base (m/n) x P(r T(K)	Seca (Nm³/h 'a) x (1-8ag) 2130,41)	

11 RELATÓRIO DE ENSAIO

PRISMA SOLUÇÕES AMBIENTAIS LTDA.

Rua Dalmo Alves, nº 258 - Vila Geny - Lorena/SP - CEP 12.604-180
Telefone: (12) 3152-9024
www.prismaambiental.com.br

RELATÓRIO DE ENSAIO Nº EA 082.23.280-R.0

1 DADOS DO CLIENTE

Cliente:	CAPRICORNIO TEXTIL S.A		
Endereço:	Av Minas Gerais Nº 1240 Jardim -Dr Júlio D	e Mesquita Filho - Cep: 12	2910411 – Bragança Paulista-SP
CNPJ	60.745.411/0006-42	Inscrição Estadual:	225.025.861.110

2 IDENTIFICAÇÃO DAS AMOSTRAS

JOB - 280	PROJETO: Chaminé da Caldeira GLP											
Nº LAB	ldentific ação	entificação Matriz		Data da amostragem	Data do recebimento	Método de amostragem						
082.280.01.01	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.02	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.03	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.04	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.05	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.06	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.07	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.08	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						
082.280.04.09	NOx	Emissões Atmosféricas	082.23	14/06/23	15/06/23	POP.EA.014						

Legenda: NOx – Óxido de Nitrogênio

Referências internas: - POP.EA.014.

Referências externas:

- L9.229.

3 RESULTADOS

Parâmetros	Identificação	Resultados	Unidade	LQ	Método	Data dos ensaios
NOx	Coleta 01	312,58	þg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 02	166,59	μg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 03	205,01	þg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 04	508,80	µg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 05	104,53	μg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 06	108,67	μg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 07	172,50	μg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 08	233,97	μg	23,43	POP.FQ.048	19/06/2023
NOx	Coleta 09	244,61	μg	23,43	POP.FQ.048	19/06/2023

Legenda:; NOx – Óxido de Nitrogênio e LD – Limite de Detecção

FOR.REL.001-06

Página 1 de 2

RELATÓRIO DE ENSAIO № EA 082.23.280-R.0

Referências internas: - POP.FQ.048. Referências externas:

- L9.229.

INFORMAÇÕES ADICIONAIS

- 1- Os resultados apresentados se referem apenas às amostras ensaiadas.
- 2- O presente Relatório de Ensaio só deve ser reproduzido por completo. A reprodução parcial requer aprovação por escrito deste laboratório.
- 3- Condições ambientais no momento dos ensaios, métodos de coleta, equipamentos utilizados, estimativas de incerteza e outras informações estão à disposição para serem solicitadas a qualquer momento pelo interessado.
- 4- Este relatório atende aos requisitos de acreditação da Cgcre, que avaliou a competência do laboratório.
- 5- Para a comparação dos resultados apresentados neste Relatório de Estudo foram utilizados os critérios de conformidade definidos pelas Normas/legislação de interesse e sem a atribuição das incertezas expandidas sobre os resultados obtidos, os cálculos foram realizados e poderão ser solicitados pela contratante a qualquer momento

4 CONCLUSÃO

As opiniões e interpretações expressas abaixo não fazem parte do escopo da acreditação deste laboratório.

Não se aplica.

5 RESPONSABILIDADE TÉCNICA

André Rodrigues Alves - CREA: 506205380

6 APROVAÇÃO DO RELATÓRIO

Relatório aprovado conforme especificações comerciais, com base nos documentos do Sistema de Gestão da Qualidade.

Lorena, 26 de Junho de 2023.

André Rodrigues Alves

Laboratório de Ensaio acreditado pela Cgcre de acordo com a ABNT NBR ISO/IEC 17025, sob o número CRL 0700

FOR.REL.001-06

Página 2 de 2

12 CERTIFICADO DE CALIBRAÇÃO

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO SETOR DE APOIO EM AVALIAÇÃO DE IMPACTOS ATMOSFÉRICOS

CERTIFICADO DE CALIBRAÇÃO № 219/2023/IAAA

Solicitante: PRISMA SOLUÇÕES AMBIENTAIS LTDA Endereço: Rua Dalmo Alves, 258 - Vila Geny

Lorena

Carta: de 17/04/2023

Ordem de Serviço: 7050 0053/2023/AFCO

Item de Ensaio | Identificação CETESB | Identificação Cliente Tubo de Pitot Tipo S C-07/10/723 S PRAMEQ 1,15 m N/D

Condições de Calibração

Temperatura ambiente: 24,2 °C Data de recebimento: 04/05/2023

Umidade relativa: 45,7 % Data de Calibração: 17/05/2023

Pressão barométrica: 93492,31 Pa Referência: Norma CETESB E16.030

Folha 1/1

Padrões Descrição dos Itens Identificação Certificado Data da Calibração Validade Empresa C-05/00/04 C-05/00/03 Manovacuômetro Dwyer A0134/2023 PHARMA 02/02/2023 Manovacuômetro Dwyer A0135/2023 PHARMA C-04/02/04 PHARMA Manovacuômetro Dwyer A0136/2023

3 anos 3 anos 3 anos 2 anos ME-12267 ME-12267 12/08/2022 Barômetro Masterlabor Pitot Padrão Dwyer mod. 166/12 C-03/14/853 P 172949-101 08/05/2019

Resultados

Faixa de Velocidade (m/s)	Velocidade do fluxo (m/s) Pitot Padrão	Pressão de Velocidade (mmH ₂ O)				Fator de Correção		Fator de Correção	
		Pitot Padrão		Pitot Teste		do tubo de pitot		Médio	
		Tramo A	Tramo B	Tramo A	Tramo B	Tramo A	Tramo B	Tramo A	Tramo B
3 à 5 .	2.99	0,50	0,50	0,70	0,70	0,837	0,837	0,843	0,849
	5.00	1,40	1,40	1,90	1,85	0,850	0,861		
5 à 15	7,32	3,00	3,00	4,10	4,05	0,847	0,852		1
		Press	Pressão de Velocidade (pol.H ₂ O)				West State S		0,850
	9.99	0.22	0,22	0,300	0,300	0,848	0,848	0,847	0,050
	14,29	0,45	0,45	0,615	0,610	0,847	0,850		
15 à 50	23.34	1,20	1,20	1,650	1,650	0,844	0,844	0,851	0,852
	30,13	2,00	2,00	2,700	2,700	0,852	0,852		
	42,61	4,00	4,00	5,350	5,300	0,856	0,860		

Nota 1 - A validade deste teste está condicionado a um período de 6 meses.

São Paulo, 17 de maio de 2023.

Téc. Herlander Tadeu Ferreira Reg.: 01.0985 CRQ: 04427619/4*

Quím. Marcelo Souza dos Anjos Gerente do Setor IAAA Reg.: 01.4653-0 CRQ 04228864/4ª

CETESB - Av. Professor Frederico Hermann Jr., 345 - Alto de Pinheiros - São Paulo - CEP 05459-900 Fone: (11) 3133-3666 - email: calibracaochamine_cetesb@sp.gov.br

CCTPS - Rev. 01 (23/10/2014)

13 ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA E CERTIFICADO DE ACREDITAÇÃO

Resolução nº 1.025/2009 - Anexo I - Modelo A Página 1/2

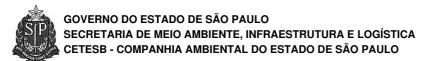
Anotação de Responsabilidade Técnica - ART
Lei nº 6.496, de 7 de dezembro de 1977
Conselho Regional de Engenharia e Agronomia do Estado de São Paulo

ART de Obra ou Serviço 28027230230911947

- 1. Responsável Técnico -ANDRE RODRIGUES ALVES RNP: 2602412937 Título Profissional Engenheiro Sanitarista e Ambiental, Engenheiro de Segurança do Trabalho Registro: 5062053800-SP Registro: 0764928-SP Empresa Contratada: PRISMA SOLUÇÕES AMBIENTAIS LTDA _ 2. Dados do Contrato -Contratante: ISEG CORPORATION LTDA CPF/CNPJ: 40.547.067/0001-65 Nº: 2584 Endereço: Rua SÃO SEBASTIÃO Bairro: CENTRO Complemento: CEP: 13560-230 Cidade: São Carlos UF: SP Contrato: EA.: 096.05.23 Celebrado em: 24/05/2023 Vinculada à Art n°: Valor: RS 8.000,00 Tipo de Contratante: Pessoa Jurídica de Direito Privado Ação Institucional: 3. Dados da Obra Serviço -Endereço: Avenida MINAS GERAIS Nº: 1240 Bairro: JARDIM DOUTOR JÚLIO DE MESQUITA FILHO Complemento: UF: SP CEP: 12910-411 Cidade: Bragança Paulista Data de Início: 14/06/2023 Previsão de Término: 30/08/2023 Coordenadas Geográficas: Código: Finalidade: Amblental CPF/CNPJ: 60.745.411/0006-42 roprietário: CAPRICORNIO TEXTIL S.A _ 4. Atividade Técnica _ Quantidade Unidade Consultoria Laudo de monitoramento 1.00000 unidade Após a conclusão das atividades técnicas o profissional deverá proceder a baixa desta ART - 5. Observações - 6. Declarações Acessibilidade: Deciaro atendimento às regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº 5.296, de 2 de dezembro-de 2004. 7. Entidade de Class - A presente ART encontra-se devidamente quitada conforme dados constantes no rodapé-versão do sistema, certificada pelo *Nosso Número* ASSOCIAÇÃO DOS ENGENHEIROS E - 8. Assinaturas Louna 2023 mho parda da via assinada da ART será de responsabilidade do profi contratante com o objetivo de documentar o vínculo contratual. data - CPF: 280.065.888-25 ANDRE RODRIGUES ALVES ISEG CORPORATION LTDA - CPF/CNPJ: 40.547.067/0001-65 Valor ART R\$ 96,62 Registrada em: 16/06/2023 Valor Pago RS 96.62 Nosso Numero: 28027230230911947 Impresso em: 21/06/2023 14:11:16

CS Digitalizado com Camiscanne

Prefeitura Municipal de Braganca Paulista - Processo: 18941/2024 - Anexado em 24/06/2024 16:20:07



NÚMERO DE INSCRIÇÃO 60.745.411/0006-42 FILIAL	COMPROVANTE DE INSCRIÇÃO E DE SITUAÇÃO DATA DE ABERTURA 04/07/1994 CADASTRAL					
NOME EMPRESARIAL CAPRICORNIO TEXTIL S.	.A					
TÍTULO DO ESTABELECIMENTO ((NOME DE FANTASIA)		PORTE DEMAIS			
CÓDIGO E DESCRIÇÃO DA ATIVIO 13.21-9-00 - Tecelagem de						
	/IDADES ECONÔMICAS SECUNDÁRIAS rejista de artigos do vestuário e ad	cessórios				
CÓDIGO E DESCRIÇÃO DA NATU 205-4 - Sociedade Anônir						
LOGRADOURO AV MINAS GERAIS		NÚMERO 1240 COMPLEMENTO ********				
12.910-411 .	BAIRRO/DISTRITO JARDIM DOUTOR JULIO DE MESQUITA FILHO	MUNICÍPIO BRAGANCA PAULISTA	UF SP			
ENDEREÇO ELETRÔNICO JURIDICO@CAPRICORN	IO.COM.BR	TELEFONE (11) 3595-9997				
ENTE FEDERATIVO RESPONSÁV *****	EL (EFR)					
SITUAÇÃO CADASTRAL ATIVA		DATA DA SITUAÇÂ 24/09/2005	ÁO CADASTRAL			
MOTIVO DE SITUAÇÃO CADASTR	RAL					
SITUAÇÃO ESPECIAL ********		DATA DA SITUAÇÃ	ÓO ESPECIAL			

Aprovado pela Instrução Normativa RFB nº 2.119, de 06 de dezembro de 2022.

Emitido no dia 23/06/2024 às 17:53:49 (data e hora de Brasília).

Página: 1/1

Processo N° 60/00530/22

^{|N°} 60006414

Versão: 01

Data: 13/07/2023

LICENÇA DE OPERAÇÃO

VALIDADE ATÉ: 01/10/2025

RENOVAÇÃO

IDENTIFICAÇÃO DA ENTIDADE

Nome CNPJ

CAPRICORNIO TEXTIL S/A

Logradouro

Cadastro na CETESB

AVENIDA MINAS GERAIS 225-69-3

Número Complemento Bairro CEP Município

1240 PENHA 12900-000 BRAGANÇA PAULISTA

CARACTERÍSTICAS DO PROJETO

Atividade Principal Descrição Tecido de indigo; fabricação de Bacia Hidrográfica **UGRHI** 14 - PIRACICABA 5 - PIRACICABA/CAPIVARI/JUNDIAÍ Corpo Receptor Classe Área (metro quadrado) Terreno Construída Atividade ao Ar Livre Novos Equipamentos Área do módulo explorado(ha) 37.736,64 17.159,10 63,00

Horário de Funcionamento (h)

Início Término
00:01 às 23:59

Número de Funcionários
Administração Produção
16 236

Licença de Instalação
Data Número

A CETESB–Companhia Ambiental do Estado de São Paulo, no uso das atribuições que lhe foram conferidas pela Lei Estadual nº 118/73, alterada pela Lei 13.542 de 08 de maio de 2009, e demais normas pertinentes, emite a presente Licença, nas condições e termos nela constantes;

A presente licença está sendo concedida com base nas informações apresentadas pelo interessado e não dispensa nem substitui quaisquer Alvarás ou Certidões de qualquer natureza, exigidos pela legislação federal, estadual ou municipal;

A presente Licença de Operação refere-se aos locais, equipamentos ou processos produtivos relacionados em folha anexa;

Os equipamentos de controle de poluição existentes deverão ser mantidos e operados adequadamente, de modo a conservar sua eficiência;

No caso de existência de equipamentos ou dispositivos de queima de combustível, a densidade da fumaça emitida pelos mesmos deverá estar de acordo com o disposto no artigo 31 do Regulamento da Lei Estadual nº 997, de 31 de maio de 1976, aprovado pelo Decreto nº 8468, de 8 de setembro de 1976, e suas alterações;

Alterações nas atuais atividades, processos ou equipamentos deverão ser precedidas de Licença Prévia e Licença de Instalação, nos termos dos artigos 58 e 58-A do Regulamento acima mencionado; Caso venham a existir reclamações da população vizinha em relação a problemas de poluição ambiental causados pela firma, esta deverá tomar medidas no sentido de solucioná-los em caráter de urgência:

A renovação da licença de operação deverá ser requerida com antecedência mínima de 120 dias, contados da data da expiração de seu prazo de validade.

USO DA CETESB

EMITENTE Local: ATIBAIA

 $SD\ N^\circ$

Tipos de Exigências Técnicas

91751905

Ar, Água, Solo, Ruído, Outros Esta licença de número 60006414 foi certificada por assinatura digital, processo eletrônico baseado em sistema criptográfico assimétrico, assinado eletronicamente por chave privada. Para verificação de sua autenticidade deve ser consultada a página da CETESB, na Internet, no endereço: autenticidade.cetesb.sp.gov.br

ENTIDADE

Página: 76 Pag.1/4

Processo N° 60/00530/22

^{N°} 60006414

Versão: 01

Data: 13/07/2023

LICENÇA DE OPERAÇÃO

VALIDADE ATÉ: 01/10/2025

RENOVAÇÃO

EXIGÊNCIAS TÉCNICAS

- 01. Fica proibido o lançamento de efluentes líquidos em galeria de água pluvial ou em via pública.
- 02. Os efluentes líquidos do empreendimento deverão ser tratados de modo a atender ao Artigo 19-A do Regulamento da Lei Estadual nº 997/76, aprovado pelo Decreto nº 8468/76, e suas alterações.
- 03. A empresa deverá adotar medidas de caráter emergencial referente ao tratamento dos efluentes industriais lançados em rede pública coletora de esgotos (considerando o parâmetro desenquadrado: sulfato), apresentando laudo e relatório das ações adotadas para a CETESB, no prazo de 60 (sessenta) dias. Relatório deverá atender à Resolução SMA 100/2013 (acreditação).
- 04. Apresentar à CETESB relatório semestral do automonitoramento dos efluentes líquidos gerados pela empresa, em formato eletrônico e digital pelo sistema e.ambiente, comparando os resultados com os valores definidos no Artigo 19-A do Regulamento da Lei Estadual nº 997/76, aprovado pelo Decreto nº 8468/76, e suas alterações. Os laudos/relatórios de amostragem e análise qualitativa deverão atender a Resolução SMA nº 100/2013.
- 05. As áreas de armazenamento/manipulação de matérias-primas, produtos, produtos químicos, efluentes, resíduos e/ou combustíveis deverão ser mantidas impermeabilizadas e providas de sistema de contenção com capacidade de receber e guardar eventuais derrames/vazamentos, de modo a evitar poluição do solo e das águas.
- Os resíduos sólidos gerados no empreendimento, independentemente de sua classificação, deverão ser adequadamente armazenados, em conformidade com as normas estabelecidas pela ABNT, e dispostos em locais aprovados pela CETESB, de forma a não causar poluição ambiental, atendendo o disposto nos artigos 51 e 52 do Regulamento da Lei nº 997/76, aprovado pelo Decreto nº 8468/76, e suas alterações.
- 07. A empresa deverá providenciar a obtenção do Certificado de Movimentação de Resíduos de Interesse Ambiental CADRI para a destinação dos resíduos considerados de interesse. A destinação dos resíduos sem a obtenção do CADRI caracterizará infração ambiental, sujeita as sanções legais cabíveis.
- 08. As fontes de poluição atmosférica do empreendimento deverão ser controladas de forma a atender aos padrões ambientais estabelecidos pelo Regulamento da Lei Estadual Nº 997/76 aprovado pelo Decreto Estadual Nº 8.468/76 e suas alterações, bem como não causar incômodos à população vizinha.
- Operações realizadas com materiais que possam gerar poluentes atmosféricos deverão ser providas de equipamentos de controle de poluentes baseados na melhor tecnologia prática disponível.
- 10. Operar e manter adequadamente os equipamentos que queimam combustível, bem como garantir a sua regulagem, visando uma combustão adequada, de modo a evitar a emissão de poluentes para a atmosfera, em atendimento ao artigo 31 do Regulamento da Lei 997/76, aprovado pelo Decreto 8468/76, e suas alterações.
- 11. Monitorar periodicamente, com frequência mínima anual, as emissões das fontes de poluição instaladas e em operação na empresa. Apresentar à CETESB, em formato eletrônico e digital pelo sistema e.ambiente, até 31/01 de cada ano, Relatório de Monitoramento de Emissões Atmosféricas (RMEA) a ser elaborado conforme Decisão de Diretoria da CETESB Nº 010/2010/P de 12.01.2010.
- 12. Os níveis de ruído emitidos pelas atividades do empreendimento deverão atender aos padrões estabelecidos pela norma ABNT NBR 10151:2019 "Acústica Medição e avaliação de níveis de pressão sonora em áreas habitadas Aplicação de uso geral", conforme Resolução Conama nº 01 de 08/03/90, retificada em 16/08/90.
 - O sistema de isolamento acústico instalado como medida de controle deverá ser mantido e operado adequadamente, de modo a conservar sua eficiência.
- As vibrações geradas pelas atividades do empreendimento deverão ser controladas de modo a evitar incômodos ao bem-estar público.
- 14. A empresa deverá apresentar no prazo de 120 (cento e vinte) dias um Laudo/relatório de classificação do resíduo (pó de algodão) gerado na empresa e que é coletado nas grades em que passam os efluentes, conforme NBR 10004/2004, da ABNT. O laudo/relatório de análise de ensaio deverá atender a Res. SMA 100/2013.

ENTIDADE

Página: 77 Pag.2/4

Processo N° 60/00530/22

60006414

Versão: 01

Data: 13/07/2023

LICENÇA DE OPERAÇAO

VALIDADE ATÉ: 01/10/2025

RENOVAÇÃO

Por ocasião da renovação da Licença de Operação deverá apresentar Memorial de Caracterização do Empreendimento - MCE atualizado, com relação aos equipamentos. Formato PDF e TXT.

OBSERVAÇÕES

A presente licença é válida para a tecelagem de fios de algodão (fabricação de tecido de indigo), nas quantidades médias anuais declaradas no MCE, utilizando as áreas, matérias-primas e processos relacionadas no MCE - Memorial de Caracterização de Empreendimento apresentado por ocasião de sua solicitação, e os seguintes equipamentos:

Unidade: Unidade 1

- Caldeira (Qtde: 1) (6.000,00 kg) Esmerilhadeira (Qtde: 2) (0,25 HP)
- Furadeira (Qtde: 1) (0,50 HP)
- Máquina de costura de uso indl (Qtde: 1) (3,45 rpm)
- Máquina de costura de uso indl (Qtde: 1) (3,60 rpm)
- Plaina (Qtde: 1) (1,00 cv) Prensa hidráulica (Qtde: 1) (12,50 cv)
- Prensa hidráulica (Qtde: 2) (1,50 HP)
- Prensa manual (Qtde: 1) (15,00 t)
- Torno mecânico (Qtde: 2) (5,00 cv)
- Balança (Qtde: 1) (500,00 kg) Centrífuga (Qtde: 1) (500,00 kg)
- Esteira transportadora (Qtde: 1) (1,50 cv)
- Esteira transportadora (Qtde: 4) (0,75 cv)
- Forno a gás (Qtde: 1)
- Máquina de corte e vinco (Qtde: 1) (3.450,00 rpm)
- Máquina de corte e vinco (Qtde: 1) (800,00 rpm)
- Máquina de corte e vinco (Qtde: 1) (1.200,00 rpm)
- Máquina de costura (Qtde: 1) (6,50 rpm)
- Máquina de costura (Qtde: 1) (4,50 rpm)
- Serra policorte (Qtde: 1) (3,00 cv)
- Motoesmeril (Qtde: 1) (0,50 cv)
- Motoesmeril (Qtde: 1) (0,50 cv) - Revisora de tecidos (Qtde: 1) (4,00 A)
- Freezer (Qtde: 1) (280,00 W)
- Compressor NH3 (Sistema de Refrigeração Convencional) (Qtde: 1) (5,00 cv)
- Tear R9500 (Qtde: 20) (3,50 kW)
- Empilhadeira Elétrica (Qtde: 1) (48,00 kW) (2.000,00 kg) Empilhadeira Elétrica (Qtde: 2) (48,00 W) (2.000,00 kg)
- Pastroung Frio (Qtde: 1) (220,00 W)
- Pastrong Quente (Qtde: 1) (220,00 W)
- Tear a jato de ar (Qtde: 40) (2.500,00 W)
- Compressor de ar (Qtde: 2) (75,00 cv) Compressor de ar (Qtde: 2) (200,00 cv)
- Tear Sulzer (Qtde: 52) (3,50 cv)
- Máquina de Solda (Qtde: 1) (15,00 cv)
- Umidificadores (Qtde: 2) (60,00 cv) Umidificadores (Qtde: 1) (70,00 cv)
- Umidificadores (Qtde: 1) (62,00 cv)
- Máquina de lavar (Qtde: 1) (1,50 cv)
- Máquina de lavar (Qtde: 1) (30,00 kg)
- Máquina de revisão (Qtde: 11) (2,50 cv)
- Secador de ar (Qtde: 4) (10,00 cv)
- Secador de roupa a vapor (Qtde: 1) (0,50 cv)
- Máquina de overloque (Qtde: 40) (0,50 cv)
- Máquina de overloque (Qtde: 2) (0,50 cv)
 Maquina de overloque (Qtde: 1) (6,00 rpm)
- Solda de Acetileno (Qtde: 1)

ENTIDADE

Pag.3/4 Página: 78

Processo N° 60/00530/22

60006414

Versão: 01

Data: 13/07/2023

LICENÇA DE OPERAÇÃO

VALIDADE ATÉ: 01/10/2025

RENOVAÇÃO

- Tanque de retorno de agua da caldeira (Qtde: 3) (6,00 m3)
- Máquina de acabamento (Qtde: 1) (0,59 m/s)
- Maquina de acabamento (Qtde: 1) (0,82 m/s)
- Máquina de embalagem (Qtde: 1) (20,00 kW)
- Balança rodoviária (Qtde: 1) (100,00 t)
- Sistema de combate a incendio (bombas) (Qtde: 1) (30,00 cv)
- Sistema de combate a incendio (gerador de energia) (Qtde: 1) (27,00 kVA)
- Empilhadeira a gás (Qtde: 8)
- Chapa de gás (Qtde: 1) Fogão a gas 6 bocas (Qtde: 1)
- Geladeira 4 portas (Qtde: 1) (220,00 W)
- Balcão termico (Qtde: 1) (220,00 kW)
- Reservatório para ar comprimido (Qtde: 1) (6.000,00 N/A)
- Esta Licença de Operação se refere à renovação e unificação das seguintes licenças e processos:
 - Licença de Operação (renovação) LOR nº 60005633, de 30.03.2020 Processo nº 60/00701/19.
 - Licença de Operação (ampliação) LO nº 60005634, de 31.03.2020 Processo nº 60/00705/19.
- Esta Licença de Operação tem a validade acima mencionada, devendo a sua renovação ser solicitada à CETESB com antecedência mínima de 120 (cento e vinte) dias da data de validade, nos termos do parágrafo 6º do inciso III do art. 2º do Decreto Estadual nº 47.400 de 04 de dezembro de 2002.
- A empresa deverá cumprir a obrigação legal de manter sua inscrição no Cadastro Técnico Federal e o Certificado de Regularidade, sempre válido, para Atividade Potencialmente Poluidora e/ou Utilizadora de Recursos Ambientais (CTF/APP) de acordo com a Tabela de Atividades e os Artigos 2º e 10-B da IN nº 06/2013. acessando o site do IBAMA: http://www.ibama.gov.br/cadastro-tecnico-tederal-cttl
- A presente licença não engloba aspectos de segurança das instalações, estando restrita a aspectos ambientais.

ENTIDADE

Pag.4/4 Página: 79